izpis_h1_title_alt

Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
ID Sherratt, Katharine (Avtor), ID Žibert, Janez (Avtor), et al.

.pdfPDF - Predstavitvena datoteka, prenos (1,97 MB)
MD5: FC542228D6C7BC402277976C4E32AC4B
URLURL - Izvorni URL, za dostop obiščite https://elifesciences.org/articles/81916 Povezava se odpre v novem oknu
URLURL - Izvorni URL, za dostop obiščite https://zenodo.org/record/7763308#.ZCKQiS0RrfY Povezava se odpre v novem oknu
Opis: Raziskovalni podatki, ki se navezujejo na članek

Izvleček
Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

Jezik:Angleški jezik
Ključne besede:infectious diseases forecatsting, epidemiology, mathematical modeling, capacity planning, COVID-19, combining independent models, ensemble forecast
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:ZF - Zdravstvena fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.01.2023
Leto izida:2023
Št. strani:19 str.
Številčenje:Vol. 12, art. e81916
PID:20.500.12556/RUL-146651 Povezava se odpre v novem oknu
UDK:616-036.22:519.876.5
ISSN pri članku:2050-084X
DOI:10.7554/eLife.81916 Povezava se odpre v novem oknu
COBISS.SI-ID:150833411 Povezava se odpre v novem oknu
Datum objave v RUL:05.06.2023
Število ogledov:712
Število prenosov:70
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:eLife
Skrajšan naslov:eLife
Založnik:eLife Sciences Publications
ISSN:2050-084X
COBISS.SI-ID:523069721 Povezava se odpre v novem oknu

Licence

Licenca:CC0 1.0, Creative Commons CC0 1.0 Univerzalna
Povezava:https://creativecommons.org/publicdomain/zero/1.0/deed.sl
Opis:CC Zero omogoča znanstvenikom, izobraževalcem, umetnikom in drugim ustvarjalcem ter lastnikom vsebin, zavarovanih z avtorsko pravico ali zbirko podatkov, da se odpovejo pravicam na svojih delih in jih tako čim bolj celovito predajo v javno domeno, da bodo drugi lahko prosto gradili, izboljševali in ponovno uporabljali dela za kakršne koli namene brez omejitev v skladu z zakonodajo o avtorskih pravicah ali zbirkah podatkov.
Začetek licenciranja:02.06.2023

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:101016233
Naslov:Pan-European Response to the ImpactS of COVID-19 and future Pandemics and Epidemics
Akronim:PERISCOPE

Financer:Drugi - Drug financer ali več financerjev

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj