Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Multiplicity of solutions for a class of fractional ▫$p(x, \cdot)$▫-Kirchhoff-type problems without the Ambrosetti-Rabinowitz condition
ID
Hamdani, Mohamed Karim
(
Avtor
),
ID
Zuo, Jiabin
(
Avtor
),
ID
Chung, Nguyen Thanh
(
Avtor
),
ID
Repovš, Dušan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(483,22 KB)
MD5: 268B0C8A2511D42DFADC4892B395FF0B
Galerija slik
Izvleček
We are interested in the existence of solutions for the following fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problem: ▫$$\textstyle\begin{cases} M ( \int _{\Omega \times \Omega } {\frac{ \vert u(x)-u(y) \vert ^{p(x,y)}}{p(x,y) \vert x-y \vert ^{N+p(x,y)s}}} \,dx \,dy )(-\Delta )^{s}_{p(x,\cdot )}u = f(x,u), \quad x\in \Omega , \\ u= 0, \quad x\in \partial \Omega , \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^{N}$▫,▫$ N\geq 2$▫ is a bounded smooth domain, ▫$s\in (0,1)$▫, ▫$p: \overline{\Omega }\times \overline{\Omega } \rightarrow (1, \infty )$▫, ▫$(-\Delta )^{s}_{p(x,\cdot)}$▫ denotes the ▫$p(x,\cdot )$▫-fractional Laplace operator, ▫$M: [0,\infty ) \to [0, \infty )$▫, and ▫$f: \Omega \times \mathbb{R} \to \mathbb{R}$▫ are continuous functions. Using variational methods, especially the symmetric mountain pass theorem due to Bartolo-Benci-Fortunato (Nonlinear Anal. 7(9):981-1012, 1983), we establish the existence of infinitely many solutions for this problem without assuming the Ambrosetti-Rabinowitz condition. Our main result in several directions extends previous ones which have recently appeared in the literature.
Jezik:
Angleški jezik
Ključne besede:
fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problems
,
▫$p(x,\cdot)$▫-fractional Laplace operator
,
Ambrosetti-Rabinowitz type conditions
,
symmetric mountain pass theorem
,
Cerami compactness condition
,
fractional Sobolev spaces with variable exponent
,
multiplicity of solutions
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:
2020
Št. strani:
art. 150, str. 1-16
Številčenje:
Vol. 2020, iss. 1
PID:
20.500.12556/RUL-120370
UDK:
517.956
ISSN pri članku:
1687-2770
DOI:
10.1186/s13661-020-01447-9
COBISS.SI-ID:
28792835
Datum objave v RUL:
18.09.2020
Število ogledov:
1359
Število prenosov:
270
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Boundary value problems
Skrajšan naslov:
Bound. value probl.
Založnik:
Springer Nature
ISSN:
1687-2770
COBISS.SI-ID:
62113025
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj