izpis_h1_title_alt

Multiplicity of solutions for a class of fractional ▫$p(x, \cdot)$▫-Kirchhoff-type problems without the Ambrosetti-Rabinowitz condition
ID Hamdani, Mohamed Karim (Avtor), ID Zuo, Jiabin (Avtor), ID Chung, Nguyen Thanh (Avtor), ID Repovš, Dušan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (483,22 KB)
MD5: 268B0C8A2511D42DFADC4892B395FF0B

Izvleček
We are interested in the existence of solutions for the following fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problem: ▫$$\textstyle\begin{cases} M ( \int _{\Omega \times \Omega } {\frac{ \vert u(x)-u(y) \vert ^{p(x,y)}}{p(x,y) \vert x-y \vert ^{N+p(x,y)s}}} \,dx \,dy )(-\Delta )^{s}_{p(x,\cdot )}u = f(x,u), \quad x\in \Omega , \\ u= 0, \quad x\in \partial \Omega , \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^{N}$▫,▫$ N\geq 2$▫ is a bounded smooth domain, ▫$s\in (0,1)$▫, ▫$p: \overline{\Omega }\times \overline{\Omega } \rightarrow (1, \infty )$▫, ▫$(-\Delta )^{s}_{p(x,\cdot)}$▫ denotes the ▫$p(x,\cdot )$▫-fractional Laplace operator, ▫$M: [0,\infty ) \to [0, \infty )$▫, and ▫$f: \Omega \times \mathbb{R} \to \mathbb{R}$▫ are continuous functions. Using variational methods, especially the symmetric mountain pass theorem due to Bartolo-Benci-Fortunato (Nonlinear Anal. 7(9):981-1012, 1983), we establish the existence of infinitely many solutions for this problem without assuming the Ambrosetti-Rabinowitz condition. Our main result in several directions extends previous ones which have recently appeared in the literature.

Jezik:Angleški jezik
Ključne besede:fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problems, ▫$p(x,\cdot)$▫-fractional Laplace operator, Ambrosetti-Rabinowitz type conditions, symmetric mountain pass theorem, Cerami compactness condition, fractional Sobolev spaces with variable exponent, multiplicity of solutions
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:2020
Št. strani:art. 150, str. 1-16
Številčenje:Vol. 2020, iss. 1
PID:20.500.12556/RUL-120370 Povezava se odpre v novem oknu
UDK:517.956
ISSN pri članku:1687-2770
DOI:10.1186/s13661-020-01447-9 Povezava se odpre v novem oknu
COBISS.SI-ID:28792835 Povezava se odpre v novem oknu
Datum objave v RUL:18.09.2020
Število ogledov:1335
Število prenosov:270
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Boundary value problems
Skrajšan naslov:Bound. value probl.
Založnik:Springer
ISSN:1687-2770
COBISS.SI-ID:62113025 Povezava se odpre v novem oknu

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj