Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Multiplicity of solutions for a class of fractional ▫$p(x, \cdot)$▫-Kirchhoff-type problems without the Ambrosetti-Rabinowitz condition
ID
Hamdani, Mohamed Karim
(
Author
),
ID
Zuo, Jiabin
(
Author
),
ID
Chung, Nguyen Thanh
(
Author
),
ID
Repovš, Dušan
(
Author
)
PDF - Presentation file,
Download
(483,22 KB)
MD5: 268B0C8A2511D42DFADC4892B395FF0B
Image galllery
Abstract
We are interested in the existence of solutions for the following fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problem: ▫$$\textstyle\begin{cases} M ( \int _{\Omega \times \Omega } {\frac{ \vert u(x)-u(y) \vert ^{p(x,y)}}{p(x,y) \vert x-y \vert ^{N+p(x,y)s}}} \,dx \,dy )(-\Delta )^{s}_{p(x,\cdot )}u = f(x,u), \quad x\in \Omega , \\ u= 0, \quad x\in \partial \Omega , \end{cases}$$▫ where ▫$\Omega \subset \mathbb{R}^{N}$▫,▫$ N\geq 2$▫ is a bounded smooth domain, ▫$s\in (0,1)$▫, ▫$p: \overline{\Omega }\times \overline{\Omega } \rightarrow (1, \infty )$▫, ▫$(-\Delta )^{s}_{p(x,\cdot)}$▫ denotes the ▫$p(x,\cdot )$▫-fractional Laplace operator, ▫$M: [0,\infty ) \to [0, \infty )$▫, and ▫$f: \Omega \times \mathbb{R} \to \mathbb{R}$▫ are continuous functions. Using variational methods, especially the symmetric mountain pass theorem due to Bartolo-Benci-Fortunato (Nonlinear Anal. 7(9):981-1012, 1983), we establish the existence of infinitely many solutions for this problem without assuming the Ambrosetti-Rabinowitz condition. Our main result in several directions extends previous ones which have recently appeared in the literature.
Language:
English
Keywords:
fractional ▫$p(x,\cdot)$▫-Kirchhoff-type problems
,
▫$p(x,\cdot)$▫-fractional Laplace operator
,
Ambrosetti-Rabinowitz type conditions
,
symmetric mountain pass theorem
,
Cerami compactness condition
,
fractional Sobolev spaces with variable exponent
,
multiplicity of solutions
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Year:
2020
Number of pages:
art. 150, str. 1-16
Numbering:
Vol. 2020, iss. 1
PID:
20.500.12556/RUL-120370
UDC:
517.956
ISSN on article:
1687-2770
DOI:
10.1186/s13661-020-01447-9
COBISS.SI-ID:
28792835
Publication date in RUL:
18.09.2020
Views:
1330
Downloads:
270
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Boundary value problems
Shortened title:
Bound. value probl.
Publisher:
Springer
ISSN:
1687-2770
COBISS.SI-ID:
62113025
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back