izpis_h1_title_alt

Vztrajnost lastnih podprostorov endomorfizma : magistrsko delo
ID Kosmač, Juš (Avtor), ID Smrekar, Jaka (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (10,81 MB)
MD5: 147A9C5C90AC9CD9B2B39994DA29C1B1

Izvleček
Namen dela je predstaviti uporabo vztrajne homologije pri preučevanju diskretnih dinamičnih sistemov. Pojem vztrajnosti obravnavamo v bolj splošnem kategoričnem okviru kot pri klasični definiciji vztrajne homologije. Posvetimo se tudi algebraični korespondenci med vztrajnimi moduli nad poljem in končno generiranimi stopničenimi moduli nad kolobarjem polinomov v eni spremenljivki. Odraža se v enostavnem opisu vztrajnosti prek vztrajnega diagrama. Pojasnimo, kako lahko iz danega končnega vzorca točk in vzorčne preslikave, s pomočjo vztrajnosti lastnih podprostorov induciranega endomorfizma na homologiji, sklepamo o globalnem značaju neznanega prostora in preslikave. Podamo algoritem za izračun vztrajnega diagrama stolpa lastnih podprostorov in utemeljimo njegovo stabilnost. Preizkusimo ga na nekaj enostavnih primerih in pojasnimo vpliv različnih parametrov (npr. velikosti vzorca, prisotnosti šuma) na rezultate.

Jezik:Slovenski jezik
Ključne besede:vztrajna homologija, diskretni dinamični sistemi, lastni podprostori endomorfizma
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2020
PID:20.500.12556/RUL-114873 Povezava se odpre v novem oknu
UDK:515.1
COBISS.SI-ID:19119107 Povezava se odpre v novem oknu
Datum objave v RUL:22.03.2020
Število ogledov:2064
Število prenosov:379
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Persistence of eigenspaces of an endomorphism
Izvleček:
The aim of this work is to show a use of persistent homology in the study of discrete dynamical systems. The notion of persistence is presented in a more general categorical setting compared to the standard definition of persistent homology. An algebraic correspondence between persistent modules over a field and finitely generated graded modules over the ring of polynomials in one variable is established. As a consequence, a simple description of persistence in terms of the persistent diagram is obtained. With the use of persistence of eigenspaces of an induced endomorphism on homology, a procedure is developed which allows us to describe the global behaviour of an unknown self-map just from a given finite sample of points and a sampled map. An algorithm to compute the persistent diagram of a tower of eigenspaces is given and its stability is proven. Lastly, it is tested on a few basic examples and the effect of different parameters (e.g. sample size, noise) on the results is explained.

Ključne besede:persistent homology, discrete dynamical systems, eigenspaces of an endomorphism

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj