izpis_h1_title_alt

Vztrajnost lastnih podprostorov endomorfizma : magistrsko delo
ID Kosmač, Juš (Author), ID Smrekar, Jaka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,81 MB)
MD5: 147A9C5C90AC9CD9B2B39994DA29C1B1

Abstract
Namen dela je predstaviti uporabo vztrajne homologije pri preučevanju diskretnih dinamičnih sistemov. Pojem vztrajnosti obravnavamo v bolj splošnem kategoričnem okviru kot pri klasični definiciji vztrajne homologije. Posvetimo se tudi algebraični korespondenci med vztrajnimi moduli nad poljem in končno generiranimi stopničenimi moduli nad kolobarjem polinomov v eni spremenljivki. Odraža se v enostavnem opisu vztrajnosti prek vztrajnega diagrama. Pojasnimo, kako lahko iz danega končnega vzorca točk in vzorčne preslikave, s pomočjo vztrajnosti lastnih podprostorov induciranega endomorfizma na homologiji, sklepamo o globalnem značaju neznanega prostora in preslikave. Podamo algoritem za izračun vztrajnega diagrama stolpa lastnih podprostorov in utemeljimo njegovo stabilnost. Preizkusimo ga na nekaj enostavnih primerih in pojasnimo vpliv različnih parametrov (npr. velikosti vzorca, prisotnosti šuma) na rezultate.

Language:Slovenian
Keywords:vztrajna homologija, diskretni dinamični sistemi, lastni podprostori endomorfizma
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-114873 This link opens in a new window
UDC:515.1
COBISS.SI-ID:19119107 This link opens in a new window
Publication date in RUL:22.03.2020
Views:2051
Downloads:379
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Persistence of eigenspaces of an endomorphism
Abstract:
The aim of this work is to show a use of persistent homology in the study of discrete dynamical systems. The notion of persistence is presented in a more general categorical setting compared to the standard definition of persistent homology. An algebraic correspondence between persistent modules over a field and finitely generated graded modules over the ring of polynomials in one variable is established. As a consequence, a simple description of persistence in terms of the persistent diagram is obtained. With the use of persistence of eigenspaces of an induced endomorphism on homology, a procedure is developed which allows us to describe the global behaviour of an unknown self-map just from a given finite sample of points and a sampled map. An algorithm to compute the persistent diagram of a tower of eigenspaces is given and its stability is proven. Lastly, it is tested on a few basic examples and the effect of different parameters (e.g. sample size, noise) on the results is explained.

Keywords:persistent homology, discrete dynamical systems, eigenspaces of an endomorphism

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back