izpis_h1_title_alt

Priporočilni sistem v grafni podatkovni bazi
ID Šmid, Jan (Avtor), ID Kukar, Matjaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (1,12 MB)
MD5: 1AC212AF3D005DE8FFBD003563CE4400

Izvleček
V diplomskem delu je predstavljen priporočilni sistem, ki je implementiran s pomočjo grafnih podatkovnih baz. Sistem za priporočanje si prizadeva predvideti oceno, ki bi jo uporabnik dal elementu, oziroma predvideti, kateri elementi bi zanimali uporabnika. Poznamo več algoritmov priporočanja. Pomembnejši pristopi so: s sodelovanjem, vsebinsko in hibridno priporočanje. Grafne podatkovne baze so zaradi svojega podatkovnega modela še posebej primerne za takšne sisteme. Njihov najvidnejši predstavnik je Neo4j. Na osnovi sistema Neo4j smo razvili priporočilni sistem za priporočanje filmov (na podlagi podatkov GroupLens) in ga nadgradili s spletno aplikacijo. Uporabili smo priporočanje s sodelovanjem in vsebinsko priporočanje. Rezultate aplikacije smo primerjali z rezultati orodja Surprise in ugotovili, da sta vrednosti MAE in RMSE podobni, če uporabimo enak algoritem.

Jezik:Slovenski jezik
Ključne besede:grafne podatkovne baze, priporočilni sistem, Neo4j
Vrsta gradiva:Diplomsko delo/naloga
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2018
PID:20.500.12556/RUL-103459 Povezava se odpre v novem oknu
Datum objave v RUL:18.09.2018
Število ogledov:1516
Število prenosov:351
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Recommender system in a graph database
Izvleček:
The thesis presents a recommender system, which is implemented using graph databases. The recommender system aims to predict the "rating" which the user would give to the element or predict which elements would be of interest to the user. There are several algorithms for recommendations. The more important approaches are: collaborative filtering, content-based filtering, and hybrid recommender systems. Graph databases are particularly suitable for such systems due to their data model. The most prominent representative is Neo4j. Based on the Neo4j system, we developed a recommender system to recommend movies (based on GroupLens data) and supported it with a web application. We used collaborative and content-based filtering. The results of the application were compared with the results of the Surprise tool. We found out that the values of MAE and RMSE are similar if we use the same algorithm.

Ključne besede:graph databases, recommender system, Neo4j

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj