izpis_h1_title_alt

Priporočilni sistem v grafni podatkovni bazi
ID Šmid, Jan (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,12 MB)
MD5: 1AC212AF3D005DE8FFBD003563CE4400

Abstract
V diplomskem delu je predstavljen priporočilni sistem, ki je implementiran s pomočjo grafnih podatkovnih baz. Sistem za priporočanje si prizadeva predvideti oceno, ki bi jo uporabnik dal elementu, oziroma predvideti, kateri elementi bi zanimali uporabnika. Poznamo več algoritmov priporočanja. Pomembnejši pristopi so: s sodelovanjem, vsebinsko in hibridno priporočanje. Grafne podatkovne baze so zaradi svojega podatkovnega modela še posebej primerne za takšne sisteme. Njihov najvidnejši predstavnik je Neo4j. Na osnovi sistema Neo4j smo razvili priporočilni sistem za priporočanje filmov (na podlagi podatkov GroupLens) in ga nadgradili s spletno aplikacijo. Uporabili smo priporočanje s sodelovanjem in vsebinsko priporočanje. Rezultate aplikacije smo primerjali z rezultati orodja Surprise in ugotovili, da sta vrednosti MAE in RMSE podobni, če uporabimo enak algoritem.

Language:Slovenian
Keywords:grafne podatkovne baze, priporočilni sistem, Neo4j
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2018
PID:20.500.12556/RUL-103459 This link opens in a new window
Publication date in RUL:18.09.2018
Views:2081
Downloads:408
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recommender system in a graph database
Abstract:
The thesis presents a recommender system, which is implemented using graph databases. The recommender system aims to predict the "rating" which the user would give to the element or predict which elements would be of interest to the user. There are several algorithms for recommendations. The more important approaches are: collaborative filtering, content-based filtering, and hybrid recommender systems. Graph databases are particularly suitable for such systems due to their data model. The most prominent representative is Neo4j. Based on the Neo4j system, we developed a recommender system to recommend movies (based on GroupLens data) and supported it with a web application. We used collaborative and content-based filtering. The results of the application were compared with the results of the Surprise tool. We found out that the values of MAE and RMSE are similar if we use the same algorithm.

Keywords:graph databases, recommender system, Neo4j

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back