izpis_h1_title_alt

Priporočilni sistem za spletno trgovino
Silič, Tomaž (Avtor), Kononenko, Igor (Mentor) Več o mentorju... Povezava se odpre v novem oknu

URLURL - Predstavitvena datoteka, za dostop obiščite http://eprints.fri.uni-lj.si/3188/ Povezava se odpre v novem oknu

Izvleček
Zaradi vse večjih potreb po hitri obdelavi velike količine podatkov se v poslovnem svetu vedno bolj pogosto uporabljajo metode podatkovnega rudarjenja znotraj različnih vrst sistemov CRM. Sistemi CRM se dopolnjujejo s tako imenovanimi priporočilnimi sistemi, ki tako strankam kot prodajalcem priporočajo izbiro raznih akcij znotraj sistema. V diplomskem delu smo pregledali obstoječe tehnike priporočilnih sistemov in posodobili manjši sistem CRM oz. spletno trgovino s priporočilnim sistemom za stranke in prodajalce. Za prodajalce smo s pomočjo algoritma Apriori tvorili povezovalna pravila med artikli glede na predhodna naročila kupcev. Povezovalna pravila so se izkazala za neuporabna, saj med artikli spletne trgovine ni bilo tesnih povezav. Za stranke pa smo po algoritmu ID3 zgradili drevo za priporočanje artiklov, ki bi utegnili stranke zanimati poleg že ogledanih artiklov. Zgradili smo dve drevesi na osnovi zgodovine obiska spletne trgovine. Podatke o obisku smo pridobili iz sistema Google Analytics.

Jezik:Neznan jezik
Ključne besede:CRM, spletna trgovina, priporočilni sistemi, podatkovno rudarjenje
Vrsta gradiva:Delo ni kategorizirano (r6)
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2015
COBISS.SI-ID:1536615363 Povezava se odpre v novem oknu
Število ogledov:617
Število prenosov:118
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Sekundarni jezik

Jezik:Neznan jezik
Naslov:Recommender system for a web store
Izvleček:
Due to the increasing demand for high-speed processing of large amounts of data in the business world, data mining is becoming widely used within the different types of CRM systems. CRM systems are complemented with recommender systems that both customers and salespeople use for selecting various actions within the system. In this thesis we reviewed the existing techniques for recommendation systems and updated the CRM system i.e. an online store with a recommendation system for customers and salespeople. For salespeople we are using an algorithm Apriori which formed the association rules between products compared to previous customers' orders. Association rules have proved to be useless, because there is no close links between products. For customers, we are using ID3 algorithm to built a recommendation tree to recommend products which may be of interest to them. We have built two trees based on the history of online shop visits. Visits data were obtained from Google Analytics system.

Ključne besede:CRM, web shop, recommendation system, data mining

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj