izpis_h1_title_alt

Geografska segmentacija uporabnikov za uporabo v oglaševanju : diplomsko delo
ID Dolenc, Blaž (Avtor), ID Zupan, Blaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (3,52 MB)
MD5: 572D1F526F3F3AF465A985D0E34D16AB
PID: 20.500.12556/rul/e6fb8293-e935-4bd4-9762-9d193e189510

Izvleček
V današnjem spletnem oglaševanju ni več edini cilj prikazati oglasa čim večjemu številu potencialnih kupcev, temveč si oglaševalci vse bolj prizadevajo oglas prikazati tistemu, ki ga bo najverjetneje zanimal. Na primer, če poznamo uporabnikovo okvirno lokacijo, lahko na podlagi prejšnjih obiskovalcev napovemo klik oglasa. Potrebo po geografski segmentaciji uporabnikov so zaznali tudi pri podjetju Zemanta, kjer so študentom zastavili izziv, pri katerem je bilo potrebno obiskovalce spletnih strani razdeliti glede na poštno številko iz katere prihajajo, ter to uporabiti kot podlago za napoved klika. Cilj naloge je bilo poiskati čim bolj smiselne skupine uporabnikov, ter jih ustrezno predstaviti, v drugem delu pa zgraditi napovedni model za napovedovanje klika na oglas, ki bo dosegal točnost napovedi AUC okoli 0,75. V nalogi poročamo o naši rešitvi tega problema, ki uporablja vrsto tehnik s področja strojnega učenja. Končna razdelitev uporabnikov, ki jo predlagamo, je obsegala 20 skupin, ki so se med seboj močno razlikovale glede na gostoto poselitve, urbanizacije in ostalih demografskih dejavnikov. Prikaz skupin na zemljevidu je pokazal, da je razdelitev smiselna. Končni AUC na testnih podatkih je znašal 0,79.

Jezik:Slovenski jezik
Ključne besede:Iskanje skupin v podatkih, gručenje, strojno učenje
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Založnik:[B. Dolenc]
Leto izida:2015
Št. strani:42 str.
PID:20.500.12556/RUL-72418 Povezava se odpre v novem oknu
COBISS.SI-ID:1536527811 Povezava se odpre v novem oknu
Datum objave v RUL:16.09.2015
Število ogledov:1256
Število prenosov:189
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Licence

Licenca:CC BY 2.5 SI, Creative Commons Priznanje avtorstva 2.5 Slovenija
Povezava:https://creativecommons.org/licenses/by/2.5/si/deed.sl
Opis:Dovoljuje kopiranje in razširjanje vsebin v kakršnemkoli mediju in obliki. Dovoljuje remixanje, urejanje, predelava in vključevanje vsebine v lastna dela v vse namene, tudi komercialne. Primerno morate navesti avtorja, povezavo do licence in označiti spremembe, če so kakšne nastale. To lahko storite na kakršenkoli razumen način, vendar ne na način, ki bi namigoval na to, da dajalec licence podpira vas ali vašo uporabo dela. Ne smete uporabiti pravnih določil ali tehničnih ukrepov, ki bi pravno omejili ali onemogočilo druge, da bi storili karkoli, kar licenca dovoli.

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Geographic segmentation of users and its use in advertising
Izvleček:
In modern web advertising the goal is not only deliver an ad to a broad number of customers, but to target particular customers who are more likely to be interested in content. If the user location is known, we can estimate click on ad based on previous visitors. The company Zemanta recognized the need for geographic audience segmentation, and they have invited students to solve their challenge. The goal was geographic segmentation of web pages visitors based on the ZIP code they come from and development of a prediction model, which can estimate the probability of click on the ad, with accuracy (AUC score) around 0,75. In this dissertation, we describe our the solution to the challenge. Our user segmentation identified 20 groups. There were large differences between them considering population density, urbanization and other demographic indicators. Plotting results on map revealed, that segmentation is meaningful. Our final AUC score on test data was 0,79.

Ključne besede:Clustering, Data mining, Machine learning

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj