In modern web advertising the goal is not only deliver an ad to a broad number of customers, but to target particular customers who are more likely to be interested in content. If the user location is known, we can estimate click on ad based on previous visitors. The company Zemanta recognized the need for geographic audience segmentation, and they have invited students to solve their challenge. The goal was geographic segmentation of web pages visitors based on the ZIP code they come from and development of a prediction model, which can estimate the probability of click on the ad, with accuracy (AUC score) around 0,75. In this dissertation, we describe our the solution to the challenge. Our user segmentation identified 20 groups. There were large differences between them considering population density, urbanization and other demographic indicators. Plotting results on map revealed, that segmentation is meaningful. Our final AUC score on test data was 0,79.
|