izpis_h1_title_alt

Podatkovne baze za podatkovno rudarjenje
LANGOF, LADO (Avtor), Kukar, Matjaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,08 MB)

Izvleček
Naloga se ukvarja z iskanjem sinergij med orodji za podatkovno rudarjenje in sistemi za upravljanje podatkovnih baz (SUPB). Predstavljajmo si situacijo analitičnega problema nad podatki, ki jih je preveč za obdelavo izključno v glavnem pomnilniku in premalo, da bi motivirali postavitev podatkovnega skladišča ali porazdeljenega analitičnega sistema. Ciljno področje je torej en sam osebni računalnik, s katerim rešujemo probleme podatkovnega rudarjenja. Zanima nas, ali obstajajo orodja, ki omogočajo učinkovito obdelavo in pripravo takšne količine podatkov za nadaljnjo analizo. Naloga se nanaša predvsem na drugi in tretji korak CRISP-DM standardnega modela podatkovnega rudarjenja, torej na razumevanje in pripravo podatkov, ne pa toliko na samo podatkovno rudarjenje. Preučuje, kako s pomočjo funkcionalnosti SUPB in orodij za luščenje, transformiranje ter nalaganje (ETL) čim bolj učinkovito pripraviti podatke za uporabo v podatkovnem rudarjenju. Podatkom zmanjšamo obseg in jih pretvorimo v ustrezno obliko. Optimizirani podatki, ki ne vsebujejo podvojenih zapisov, tiskarskih napak in drugih neželenih lastnosti ter vsebujejo le tiste atribute, ki jih lahko uporabimo, pozitivno vplivajo na hitrost in natančnost podatkovnega rudarjenja. Cilj naloge je torej poiskati primerne načine (orodja oz. kombinacije orodij, metodologije) kako pridobiti relativno velike količine podatkov iz različnih virov in oblik, jih združiti in pretvoriti v obliko, ki jo lahko neposredno uporabimo za podatkovno rudarjenje, pri tem pa uporabljati SUPB in ETL orodja.

Jezik:Slovenski jezik
Ključne besede:ETL, ELT, CRISP-DM, SUPB, priprava podatkov, transformacije, podatkovno rudarjenje
Vrsta gradiva:Magistrsko delo/naloga (mb22)
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2015
Število ogledov:623
Število prenosov:287
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
 
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
:
Objavi na:AddThis
AddThis uporablja piškotke, za katere potrebujemo vaše privoljenje.
Uredi privoljenje...

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Databases for Data Mining
Izvleček:
This work is about looking for synergies between data mining tools and databa-se management systems (DBMS). Imagine a situation where we need to solve an analytical problem using data that are too large to be processed solely inside the main physical memory and at the same time too small to put data warehouse or distributed analytical system in place. The target area is therefore a single personal computer that is used to solve data mining problems. We are looking for tools that allows us to effectively process and prepare such quantity of data for further analysis. The main focus of this work is not on data mining itself but in particular on the second and third step of CRISP-DM process standard for data mining, that is data understanding and data preparation step. The question is how to use functionalities of various DBMS and ETL tools to prepare data as effectively as possible to use it in data mining. Unneeded data should be ignored and the remainder should be transformed into an appropriate form. Data mining execution time and accuracy should be improved when using optimized data that do not contain unneeded attributes, duplicate records, typos and other unwanted properties. The objective of this work is thus to find appropriate practical methods (tools or combinations of tools, methodologies) for collecting relatively large amounts of data from different sources and in different forms, joining them and transforming this data to a format that can be used directly in data mining algorithms by using DMBS and ETL tools.

Ključne besede:ETL, ELT, CRISP-DM, DBMS, data preparation, transformations, data mining

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj