Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Decentralized physical infrastructure networks (DePINs) for solar energy: the impact of network density on forecasting accuracy and economic viability
ID
Corn, Marko
(
Avtor
),
ID
Murko, Anže
(
Avtor
),
ID
Podržaj, Primož
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,23 MB)
MD5: 2E3B8619ABD6E51B389185F29210BC8C
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2571-9394/7/4/77#Abstract
Galerija slik
Izvleček
This study explores the role of decentralized physical infrastructure networks (DePINs) in enhancing solar energy forecasting, focusing on how network density influences prediction accuracy and economic viability. Using machine learning models applied to production data from 47 residential PV systems in Utrecht, Netherlands, we developed a hierarchical forecasting framework: Level 1 (clear-sky baseline without historical data), Level 2 (solo forecasting using only local historical data), and Level 3 (networked forecasting incorporating data from neighboring installations). The results show that networked forecasting substantially improves accuracy: under solo forecasting conditions (Level 2), the Random Forests model reduces Mean Absolute Error (MAE) by 17% relative to the Level 1 baseline, and incorporating all available neighbors (Level 3) further reduces the MAE by an additional 34% relative to Level 2, corresponding to a total improvement of 45% compared with Level 1. The largest accuracy gains arise from the first 10–15 neighbors, highlighting the dominant influence of local spatial correlations. These forecasting improvements translate into significant economic benefits. Imbalance costs decrease from EUR 1618 at Level 1 to EUR 1339 at Level 2 and further to EUR 884 at Level 3, illustrating the financial impact of both solo and networked data sharing. A marginal benefit analysis reveals diminishing returns beyond approximately 10–15 neighbors, consistent with spatial saturation effects within 5–10 km radii. These findings provide a quantitative foundation for incentive mechanisms in DePIN ecosystems and demonstrate that privacy-preserving data sharing mitigates data fragmentation, reduces imbalance costs for energy traders, and creates new revenue opportunities for participants, thereby supporting the development of decentralized energy markets.
Jezik:
Angleški jezik
Ključne besede:
DePIN
,
solar energy
,
machine learning
,
forecasting
,
network density
,
economic impact
,
data silos
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
30 str.
Številčenje:
Vol. 7, issue 4, art. 77
PID:
20.500.12556/RUL-177778
UDK:
621.311.243:004.85
ISSN pri članku:
2571-9394
DOI:
10.3390/forecast7040077
COBISS.SI-ID:
263682563
Datum objave v RUL:
07.01.2026
Število ogledov:
44
Število prenosov:
10
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Forecasting
Skrajšan naslov:
Forecasting
Založnik:
MDPI AG
ISSN:
2571-9394
COBISS.SI-ID:
4751560
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
decentralizirana omrežja fizične infrastrukture
,
sončne elektrarne
,
strojno učenje
,
napovedovanje časovnih vrst
,
gostota omrežij
,
gospodarski vpliv
,
podatkovne zbirke
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0270
Naslov:
Proizvodni sistemi, laserske tehnologije in spajanje materialov
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Ministry of Higher Education, Science and Innovation of the Republic of Slovenia
Številka projekta:
100-15-0510
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj