Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Analyzing the influence of users, devices, and search engines on viral spread in the social internet of things
ID
Gan, Chenquan
(
Avtor
),
ID
Chen, Hongming
(
Avtor
),
ID
Qian, Yi
(
Avtor
),
ID
Tian, Liang
(
Avtor
),
ID
Zhu, Qingyi
(
Avtor
),
ID
Jain, Deepak Kumar
(
Avtor
),
ID
Štruc, Vitomir
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,52 MB)
MD5: 846587130B20928433B53AD7AE748ECF
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S2542660525003567
Galerija slik
Izvleček
The Social Internet of Things (SIoT) seamlessly integrates the Internet of Things (IoT) with social networks, intensifying the interconnections among objects, humans, and their interactions. While SIoT facilitates rapid information access and sharing through search engines, it also increases the risk of computer virus propagation. It is, therefore, critical to understand how viruses propagate in SIoT networks and which factors contribute the most to viral spread. While such understanding is of paramount importance, comprehensive studies on this topic are still limited in the literature. To address this gap, we study in this paper the long-term behavior of viral spread in SIoT, examining the roles of users, devices, and search engines. Specifically, we propose a novel dynamical virus propagation model that accounts for key factors, such as user awareness, device security levels, search engines, and external storage media. In comparison to competing solutions, the proposed model offers a unique perspective on viral spread in SIoT by focusing on multiple influential factors, their interactions, while also considering the inherent characteristics of the SIoT framework. A comprehensive theoretical analysis of the model is conducted to identify patterns and the key aspects of virus propagation in SIoT. To further validate the findings, a virus propagation algorithm is also designed, and multiple simulations are conducted on two real network datasets (Facebook and P2P), demonstrating the validity of the theoretical findings.
Jezik:
Angleški jezik
Ključne besede:
artificial intelligence
,
social networks
,
internet of things
,
viral spread
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2026
Št. strani:
18 str.
Številčenje:
Vol. 35, art. 101842
PID:
20.500.12556/RUL-177397
UDK:
004.8
ISSN pri članku:
2542-6605
DOI:
10.1016/j.iot.2025.101842
COBISS.SI-ID:
262607619
Datum objave v RUL:
22.12.2025
Število ogledov:
32
Število prenosov:
4
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Internet of things
Založnik:
Elsevier B.V.
ISSN:
2542-6605
COBISS.SI-ID:
8909153
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
umetna inteligenca
,
socialna omrežja
,
internet stvari
,
širjenje virusov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj