Podrobno

Prediction of environment-related operation and maintenance events in small hydropower plants
ID Selak, Luka (Avtor), ID Škulj, Gašper (Avtor), ID Kozjek, Dominik (Avtor), ID Bračun, Drago (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (9,25 MB)
MD5: C2EDDFC5E403AA7EAA85A190AAB34DCC
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2504-4990/7/4/163#Abstract Povezava se odpre v novem oknu

Izvleček
Operation and maintenance (O&M) events resulting from environmental factors (e.g., precipitation, temperature, seasonality, and unexpected weather conditions) are among the primary sources of operating costs and downtime in run-of-river small hydropower plants (SHPs). This paper presents a data-driven methodology for predicting such long events using machine learning models trained on historical power production, weather radar, and forecast data. Case studies on two Slovenian SHPs with different structural designs and levels of automation demonstrate how environmental features—such as day of year, rain duration, cumulative amount of rain, and rolling precipitation sums—can be used to forecast long events or shutdowns. The proposed approach integrates probabilistic classification outputs with threshold-consistency smoothing to reduce noise and stabilize predictions. Several algorithms were tested—including Logistic Regression, Support Vector Machine (SVM), Random Forest, Gradient Boosting, and k-Nearest Neighbors (k-NN)—across varying feature combinations for O&M model development, with cross-validation ensuring robust evaluation. The models achieved an F1-score of up to 0.58 in SHP1 (k-NN), showing strong seasonality dependence, and up to 0.68 in SHP2 (Gradient Boosting). For SHP1, the best model (k-NN) correctly detected 36 long events, while 15 were misclassified as no events and 38 false alarms were produced. For SHP2, the best model (Gradient Boosting) correctly detected 69 long events, misclassified 23 as no events, and produced 42 false alarms. The findings highlight that probabilistic machine learning-based forecasting can effectively support predictive O&M planning, particularly for manually operated or service-operated SHPs.

Jezik:Angleški jezik
Ključne besede:small hydropower plants, environment related operation and maintenance, nonlinear predictive models
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:33 str.
Številčenje:Vol. 7, no. 4, art. 163
PID:20.500.12556/RUL-177128 Povezava se odpre v novem oknu
UDK:621.311.21
ISSN pri članku:2504-4990
DOI:10.3390/make7040163 Povezava se odpre v novem oknu
COBISS.SI-ID:261667331 Povezava se odpre v novem oknu
Datum objave v RUL:16.12.2025
Število ogledov:42
Število prenosov:8
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Machine learning and knowledge extraction
Založnik:MDPI
ISSN:2504-4990
COBISS.SI-ID:1537706179 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:male hidroelektrarne, okoljsko obratovanje, vzdrževanje, nelinearni napovedni modeli

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0270
Naslov:Proizvodni sistemi, laserske tehnologije in spajanje materialov

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Ministry of Higher Education, Science and Technology of Republic of Slovenia

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj