Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
EmoVisioNet : a hybrid network unifying lightweight CNN and attention-based vision model for facial emotion detection
ID
Mishra, Gargi
(
Avtor
),
ID
Bajpai, Supriya
(
Avtor
),
ID
Saini, Dharmender
(
Avtor
),
ID
Jain, Rachna
(
Avtor
),
ID
Jain, Deepak Kumar
(
Avtor
),
ID
Štruc, Vitomir
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,79 MB)
MD5: 280CFC453B59312E58267AFA0E66B9A2
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0925231225028966
Galerija slik
Izvleček
Facial emotion detection has witnessed a surge in demand across numerous applications, including human-computer interaction, healthcare, and security. Accurate expression recognition is crucial for improving human-computer interactions and understanding human behavior. Existing facial emotion detection models face challenges in achieving both high accuracy and real-time processing due to complex architectures. Our goal is to create an efficient yet accurate solution that can work on resource-constrained devices. To address the challenge of accurately recognizing emotions from facial expressions, we propose a novel hybrid approach that combines the strengths of pretrained Lightweight Convolutional Neural Networks (CNNs), and Attention-based Vision Models. The pretrained Lightweight CNN serves as a feature extractor, efficiently capturing facial features, while the attention model refines the feature representation to focus on crucial regions of the face associated with different expressions. This enables our model to achieve state-of-the-art (SOTA) accuracy with reduced computational requirements. The proposed model, EmoVisioNet, achieves superior performance across multiple datasets, attaining 99.97 % accuracy on CK+, 96.23 % on RAF-DB, 93.88 % on FER2013, and 96.91 % on FERPlus. The obtained results surpass the current state-of-the-art in this field, demonstrating EmoVisioNet’s superior performance in facial expression recognition.
Jezik:
Angleški jezik
Ključne besede:
artificial intelligence
,
computer vision
,
machine learning
,
facial analysis
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2026
Št. strani:
12 str.
Številčenje:
Vol. 665, art.132224
PID:
20.500.12556/RUL-176579
UDK:
004.8
ISSN pri članku:
1872-8286
DOI:
10.1016/j.neucom.2025.132224
COBISS.SI-ID:
259745027
Datum objave v RUL:
04.12.2025
Število ogledov:
62
Število prenosov:
12
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Neurocomputing
Založnik:
Elsevier
ISSN:
1872-8286
COBISS.SI-ID:
152340995
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
umetna inteligenca
,
računalniški vid
,
strojno učenje
,
analiza obrazov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj