Podrobno

Synthesizing multilevel abstraction ear sketches for enhanced biometric recognition
ID Freire-Obregón, David (Avtor), ID Neves, Joao (Avtor), ID Emeršič, Žiga (Avtor), ID Meden, Blaž (Avtor), ID Castrillón-Santana, Modesto (Avtor), ID Proença, Hugo (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,58 MB)
MD5: EDAE253F8F19A59E64D3935E1B8822B9
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0262885625000125 Povezava se odpre v novem oknu

Izvleček
Sketch understanding poses unique challenges for general-purpose vision algorithms due to the sparse and semantically ambiguous nature of sketches. This paper introduces a novel approach to biometric recognition that leverages sketch-based representations of ears, a largely unexplored but promising area in biometric research. Specifically, we address the “sketch-2-image” matching problem by synthesizing ear sketches at multiple abstraction levels, achieved through a triplet-loss function adapted to integrate these levels. The abstraction level is determined by the number of strokes used, with fewer strokes reflecting higher abstraction. Our methodology combines sketch representations across abstraction levels to improve robustness and generalizability in matching. Extensive evaluations were conducted on four ear datasets (AMI, AWE, IITDII, and BIPLab) using various pre-trained neural network backbones, showing consistently superior performance over state-of-the-art methods. These results highlight the potential of ear sketch-based recognition, with cross-dataset tests confirming its adaptability to real-world conditions and suggesting applicability beyond ear biometrics.

Jezik:Angleški jezik
Ključne besede:ear biometrics, sketch-based identification, triplet-loss function, cross-dataset generalizability
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:10 str.
Številčenje:Vol. 154, art. 105424
PID:20.500.12556/RUL-176531 Povezava se odpre v novem oknu
UDK:004.93:57.087.1
ISSN pri članku:0262-8856
DOI:10.1016/j.imavis.2025.105424 Povezava se odpre v novem oknu
COBISS.SI-ID:258163715 Povezava se odpre v novem oknu
Datum objave v RUL:03.12.2025
Število ogledov:57
Število prenosov:12
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Image and vision computing
Skrajšan naslov:Image vis. comput.
Založnik:Butterworth Scientific
ISSN:0262-8856
COBISS.SI-ID:25590016 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:biometrija uhljev, identifikacija na podlagi skice, trojnoizgubna funkcija, splošna prenosljivost med podatkovnimi nabori

Projekti

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:UIDB/50008/2020
Naslov:Instituto de Telecomunicações
Akronim:IT

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:UIDB/04516/2020
Naslov:NOVA Laboratory for Computer Science and Informatics
Akronim:NOVA LINCS

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj