Podrobno

Machine learning for enabling high-data-rate secure random communication : SVM as the optimal choice over others
ID Ahmed, Areeb (Avtor), ID Bosnić, Zoran (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (10,02 MB)
MD5: C327D496CE490A99DAC9D320C72A3BFC
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2227-7390/13/22/3590 Povezava se odpre v novem oknu

Izvleček
Machine learning (ML) has become a key ingredient in revolutionizing the physical layer security of next-generation devices across Industry 4.0, healthcare, and communication networks. Many conventional and unconventional communication architectures now incorporate ML algorithms for performance and security enhancement. In this study, we propose an unconventional, high-data-rate, machine-learning-driven, secure random communication system (HDR-MLRCS). Instead of utilizing traditional static methods to encrypt and decrypt alpha-stable (α-stable) noise as a random carrier, we integrated several ML algorithms to convey binary information to the intended receivers covertly. A support vector machine-aided receiver (SVM-R), Naïve Bayes-aided receiver (NB-R), k-Nearest Neighbor-aided receiver (kNN-R), and decision tree-aided receiver (DT-R) were integrated into a single architecture to provide an accelerated data rate with robust security. All intended receivers were pre-trained on a restricted-access dataset (R-D) and exploited a static key—the pulse length—to generate and successfully classify α-stable noise samples to extract hidden binary digits. We demonstrated the performance of the proposed HDR-MLRCS by simulating 4-bit and 1000-bit transmissions (including bit error rates and confusion matrices) from the perspectives of the intended receivers and the eavesdropper receiver (E-R). The significance of the HDR-MLRCS lies in its significantly higher data rates compared to previously proposed counterparts using static receivers. At the same time, the SVM-R consistently outperformed all other considered intended receivers. Moreover, the decisive failure of E-R ensures the architecture’s resistance to possible interception of communications. The fusion of high data throughput and robustness, enabled by the utilization of ML and α-stable noise as a random carrier, highlights the suitability of HDR-MLRCS for future secure communication infrastructures.

Jezik:Angleški jezik
Ključne besede:machine learning, covert communication, random communication system
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:Str. 1-22
Številčenje:Vol. 13, iss. 22, art. 3590
PID:20.500.12556/RUL-176018 Povezava se odpre v novem oknu
UDK:004.85:621.39
ISSN pri članku:2227-7390
DOI:10.3390/math13223590 Povezava se odpre v novem oknu
COBISS.SI-ID:256493571 Povezava se odpre v novem oknu
Datum objave v RUL:18.11.2025
Število ogledov:83
Število prenosov:19
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Mathematics
Skrajšan naslov:Mathematics
Založnik:MDPI AG
ISSN:2227-7390
COBISS.SI-ID:523267865 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:strojno učenje, skrita komunikacija, naključni komunikacijski sistem

Projekti

Financer:UKRI - UK Research and Innovation
Številka projekta:10062954
Naslov:Horizon Europe (HORIZON) Call: HORIZON-INFRA-2021-DEV-02 Project: 101079773 — EuPRAXIA ESFRI Project Preparatory Phase

Financer:Drugi - Drug financer ali več financerjev
Program financ.:European Union’s Horizon 2020
Številka projekta:713673
Naslov:Marie Skłodowska-Curie grant

Financer:EC - European Commission
Številka projekta:672598
Naslov:SMASH, SMArt SHaring device for mobility
Akronim:SMASH

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj