Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Machine learning for enabling high-data-rate secure random communication : SVM as the optimal choice over others
ID
Ahmed, Areeb
(
Avtor
),
ID
Bosnić, Zoran
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(10,02 MB)
MD5: C327D496CE490A99DAC9D320C72A3BFC
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2227-7390/13/22/3590
Galerija slik
Izvleček
Machine learning (ML) has become a key ingredient in revolutionizing the physical layer security of next-generation devices across Industry 4.0, healthcare, and communication networks. Many conventional and unconventional communication architectures now incorporate ML algorithms for performance and security enhancement. In this study, we propose an unconventional, high-data-rate, machine-learning-driven, secure random communication system (HDR-MLRCS). Instead of utilizing traditional static methods to encrypt and decrypt alpha-stable (α-stable) noise as a random carrier, we integrated several ML algorithms to convey binary information to the intended receivers covertly. A support vector machine-aided receiver (SVM-R), Naïve Bayes-aided receiver (NB-R), k-Nearest Neighbor-aided receiver (kNN-R), and decision tree-aided receiver (DT-R) were integrated into a single architecture to provide an accelerated data rate with robust security. All intended receivers were pre-trained on a restricted-access dataset (R-D) and exploited a static key—the pulse length—to generate and successfully classify α-stable noise samples to extract hidden binary digits. We demonstrated the performance of the proposed HDR-MLRCS by simulating 4-bit and 1000-bit transmissions (including bit error rates and confusion matrices) from the perspectives of the intended receivers and the eavesdropper receiver (E-R). The significance of the HDR-MLRCS lies in its significantly higher data rates compared to previously proposed counterparts using static receivers. At the same time, the SVM-R consistently outperformed all other considered intended receivers. Moreover, the decisive failure of E-R ensures the architecture’s resistance to possible interception of communications. The fusion of high data throughput and robustness, enabled by the utilization of ML and α-stable noise as a random carrier, highlights the suitability of HDR-MLRCS for future secure communication infrastructures.
Jezik:
Angleški jezik
Ključne besede:
machine learning
,
covert communication
,
random communication system
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
Str. 1-22
Številčenje:
Vol. 13, iss. 22, art. 3590
PID:
20.500.12556/RUL-176018
UDK:
004.85:621.39
ISSN pri članku:
2227-7390
DOI:
10.3390/math13223590
COBISS.SI-ID:
256493571
Datum objave v RUL:
18.11.2025
Število ogledov:
83
Število prenosov:
19
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mathematics
Skrajšan naslov:
Mathematics
Založnik:
MDPI AG
ISSN:
2227-7390
COBISS.SI-ID:
523267865
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
skrita komunikacija
,
naključni komunikacijski sistem
Projekti
Financer:
UKRI - UK Research and Innovation
Številka projekta:
10062954
Naslov:
Horizon Europe (HORIZON) Call: HORIZON-INFRA-2021-DEV-02 Project: 101079773 — EuPRAXIA ESFRI Project Preparatory Phase
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
European Union’s Horizon 2020
Številka projekta:
713673
Naslov:
Marie Skłodowska-Curie grant
Financer:
EC - European Commission
Številka projekta:
672598
Naslov:
SMASH, SMArt SHaring device for mobility
Akronim:
SMASH
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj