Podrobno

Advancements in data-driven evolving fuzzy and neuro-fuzzy control : a comprehensive survey
ID Andonovski, Goran (Avtor), ID Leite, Daniel (Avtor), ID Precup, Radu-Emil (Avtor), ID Gomide, Fernando (Avtor), ID Pratama, Mahardhika (Avtor), ID Škrjanc, Igor (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (9,52 MB)
MD5: 61B192DAEC1FE9D88CB74062A2CD9754
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1568494625013717 Povezava se odpre v novem oknu

Izvleček
In an era of increasing system complexity and growing demands for autonomy and efficiency, control systems must continuously adapt to dynamic and uncertain environments. This study presents a comprehensive survey of evolving fuzzy and neuro-fuzzy controllers, with emphasis on data-driven control systems that adapt in real time in both structure and parameters. As the demand for adaptive and flexible control solutions grows alongside the increasing complexity of systems, evolving model-free and model-based fuzzy, neural, and neuro-fuzzy controllers have emerged as robust approaches, allowing models and controllers to integrate new patterns from data streams. Incremental machine learning methods enable control systems to autonomously detect and track new behaviors, improving their effectiveness in time-varying and unknown environments. Based on a rigorous bibliometric analysis using the Web of Science database, 2760 related papers were identified of which 97 were manually selected for detailed review due to their direct relevance to closed-loop evolving fuzzy or neuro-fuzzy control systems. These papers cover a wide range of methods, including basic parameter tuning, adaptive gain scheduling, and structural modifications grounded in constrained optimization and Lyapunov stability analysis. Such advances mark significant progress in the control of unknown, time-varying systems, with the surveyed literature demonstrating promising results in various applications. The abstracted findings reveal an increase in publications since 2013, confirming the relevance of evolving control in engineering. This review provides a comprehensive analysis of methodologies and achievements in the field, highlighting emerging trends, challenges, and research directions within evolving data-driven control. The novelty of this study lies in its focus on the structural evolution of controllers under real-time constraints, consolidating incremental machine learning for partition-based closed-loop architectures.

Jezik:Angleški jezik
Ključne besede:incremental machine learning, fuzzy systems, neural networks, adaptive and real-time control, data-driven control
Vrsta gradiva:Članek v reviji
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2026
Št. strani:17 str.
Številčenje:Vol. 186, part A, art. 114058
PID:20.500.12556/RUL-175596 Povezava se odpre v novem oknu
UDK:681.5
ISSN pri članku:1872-9681
DOI:10.1016/j.asoc.2025.114058 Povezava se odpre v novem oknu
COBISS.SI-ID:254323715 Povezava se odpre v novem oknu
Datum objave v RUL:05.11.2025
Število ogledov:104
Število prenosov:69
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied soft computing
Založnik:Elsevier Science
ISSN:1872-9681
COBISS.SI-ID:19536150 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:inkrementalno strojno učenje, mehki sistemi, nevronske mreže, adaptivno in sprotno vodenje, vodenje na osnovi podatkov

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0219
Naslov:Modeliranje, simulacija in vodenje procesov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:DIGITOP- RRI
Naslov:Digitalna transformacija robotiziranih tovarn prihodnosti
Akronim:DIGITOP

Financer:Ministry of Culture and Science of the State of North Rhyne Westphalia
Številka projekta:NW21-059D
Naslov:SAIL project

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj