Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Advancements in data-driven evolving fuzzy and neuro-fuzzy control : a comprehensive survey
ID
Andonovski, Goran
(
Avtor
),
ID
Leite, Daniel
(
Avtor
),
ID
Precup, Radu-Emil
(
Avtor
),
ID
Gomide, Fernando
(
Avtor
),
ID
Pratama, Mahardhika
(
Avtor
),
ID
Škrjanc, Igor
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(9,52 MB)
MD5: 61B192DAEC1FE9D88CB74062A2CD9754
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S1568494625013717
Galerija slik
Izvleček
In an era of increasing system complexity and growing demands for autonomy and efficiency, control systems must continuously adapt to dynamic and uncertain environments. This study presents a comprehensive survey of evolving fuzzy and neuro-fuzzy controllers, with emphasis on data-driven control systems that adapt in real time in both structure and parameters. As the demand for adaptive and flexible control solutions grows alongside the increasing complexity of systems, evolving model-free and model-based fuzzy, neural, and neuro-fuzzy controllers have emerged as robust approaches, allowing models and controllers to integrate new patterns from data streams. Incremental machine learning methods enable control systems to autonomously detect and track new behaviors, improving their effectiveness in time-varying and unknown environments. Based on a rigorous bibliometric analysis using the Web of Science database, 2760 related papers were identified of which 97 were manually selected for detailed review due to their direct relevance to closed-loop evolving fuzzy or neuro-fuzzy control systems. These papers cover a wide range of methods, including basic parameter tuning, adaptive gain scheduling, and structural modifications grounded in constrained optimization and Lyapunov stability analysis. Such advances mark significant progress in the control of unknown, time-varying systems, with the surveyed literature demonstrating promising results in various applications. The abstracted findings reveal an increase in publications since 2013, confirming the relevance of evolving control in engineering. This review provides a comprehensive analysis of methodologies and achievements in the field, highlighting emerging trends, challenges, and research directions within evolving data-driven control. The novelty of this study lies in its focus on the structural evolution of controllers under real-time constraints, consolidating incremental machine learning for partition-based closed-loop architectures.
Jezik:
Angleški jezik
Ključne besede:
incremental machine learning
,
fuzzy systems
,
neural networks
,
adaptive and real-time control
,
data-driven control
Vrsta gradiva:
Članek v reviji
Tipologija:
1.02 - Pregledni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2026
Št. strani:
17 str.
Številčenje:
Vol. 186, part A, art. 114058
PID:
20.500.12556/RUL-175596
UDK:
681.5
ISSN pri članku:
1872-9681
DOI:
10.1016/j.asoc.2025.114058
COBISS.SI-ID:
254323715
Datum objave v RUL:
05.11.2025
Število ogledov:
104
Število prenosov:
69
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied soft computing
Založnik:
Elsevier Science
ISSN:
1872-9681
COBISS.SI-ID:
19536150
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
inkrementalno strojno učenje
,
mehki sistemi
,
nevronske mreže
,
adaptivno in sprotno vodenje
,
vodenje na osnovi podatkov
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0219
Naslov:
Modeliranje, simulacija in vodenje procesov
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
DIGITOP- RRI
Naslov:
Digitalna transformacija robotiziranih tovarn prihodnosti
Akronim:
DIGITOP
Financer:
Ministry of Culture and Science of the State of North Rhyne Westphalia
Številka projekta:
NW21-059D
Naslov:
SAIL project
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj