Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Prediction of suicidal ideation and depression in the general population with subthreshold insomnia using machine learning models
ID
Rus Prelog, Polona
(
Avtor
),
ID
Matić, Teodora
(
Avtor
),
ID
Pregelj, Peter
(
Avtor
),
ID
Sadikov, Aleksander
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,59 MB)
MD5: 15E9975B9449620A1943BAA2EBD44F2E
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1186/s12888-025-07451-6
Galerija slik
Izvleček
Background Insomnia is a significant independent risk factor for depression and suicidality. However, these conditions often go undetected, particularly in individuals presenting with sleep complaints. This study aimed to develop and validate machine learning (ML) models for the indirect screening of suicidal ideation (SI) and depression and to specifically evaluate their performance in a population reporting at least subthreshold insomnia. Methods Data were obtained from a Slovenian nationwide community sample (N = 2,989) via an online questionnaire. Logistic regression models were developed to predict SI (measured by SIDAS) and moderate-to-severe depression (measured by DASS-21) via indirect predictors, including socio-demographics, life satisfaction, behavioral changes, and 14 coping strategies from the Brief COPE inventory. The model performance was tested on a validation sample, which was stratified into groups with (Insomnia Severity Index [ISI] score ≥ 8; n = 917) and without (ISI < 8; n = 819) insomnia symptoms. Results The models demonstrated strong and consistent predictive performance across both groups. The area under the receiver operating characteristic curve (AUROC) for the SI model was 0.78 in the insomnia group and 0.80 in the non-insomnia group. For the depression model, the AUROCs were 0.79 and 0.82, respectively. The minimal difference in performance indicates that the models are robust and equally effective regardless of the presence of insomnia. Conclusion Our findings demonstrate that ML models using indirect questions can effectively screen for both suicidality and depression simultaneously. The models' robust performance in individuals with insomnia highlights their potential as feasible, ethical, and efficient tools for early detection. Given that sleep complaints are a common reason for seeking healthcare, this approach offers a critical opportunity for timely intervention in a high-risk population, potentially reducing preventable morbidity and mortality associated with suicide and depression.
Jezik:
Angleški jezik
Ključne besede:
depression
,
suicidal ideation
,
insomnia
,
machine learning
,
indirect screening
,
suicide prevention
,
coping mechanisms
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
10 str.
Številčenje:
Vol. 25, iss. 1, art. 1003
PID:
20.500.12556/RUL-175594
UDK:
004.85:616.89-008.441.44:616.895.4
ISSN pri članku:
1471-244X
DOI:
10.1186/s12888-025-07451-6
COBISS.SI-ID:
253760259
Datum objave v RUL:
05.11.2025
Število ogledov:
149
Število prenosov:
33
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
BMC psychiatry
Skrajšan naslov:
BMC Psychiatry
Založnik:
BioMed Central
ISSN:
1471-244X
COBISS.SI-ID:
2446100
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
depresija
,
suicidalna ideacija
,
nespečnost
,
strojno učenje
,
presejalni test
,
preprečevanje samomorilnosti
,
mehanizmi spoprijemanja s težavami
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0209
Naslov:
Umetna inteligenca in inteligentni sistemi
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj