Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Machine learning-assisted secure random communication system
ID
Ahmed, Areeb
(
Avtor
),
ID
Bosnić, Zoran
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,78 MB)
MD5: 15FA6D1B28107BB991BA8B6AD66E7058
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/1099-4300/27/8/815
Galerija slik
Izvleček
Machine learning techniques have revolutionized physical layer security (PLS) and provided opportunities for optimizing the performance and security of modern communication systems. In this study, we propose the first machine learning-assisted random communication system (ML-RCS). It comprises a pretrained decision tree (DT)-based receiver that extracts binary information from the transmitted random noise carrier signals. The ML-RCS employs skewed alpha-stable ($\alpha$-stable) noise as a random carrier to encode the incoming binary bits securely. The DT model is pretrained on an extensively developed dataset encompassing all the selected parameter combinations to generate and detect the $\alpha$-stable noise signals. The legitimate receiver leverages the pretrained DT and a predetermined key, specifically the pulse length of a single binary information bit, to securely decode the hidden binary bits. The performance evaluations included the single-bit transmission, confusion matrices, and a bit error rate (BER) analysis via Monte Carlo simulations. The fact that the BER reached $y=10^{-3}$ confirms the ability of the proposed system to establish successful secure communication between a transmitter and legitimate receiver. Additionally, the ML-RCS provides an increased data rate compared to previous random communication systems. From the perspective of security, the confusion matrices and computed false negative rate of 50.2% demonstrate the failure of an eavesdropper to decode the binary bits without access to the predetermined key and the private dataset. These findings highlight the potential ability of unconventional ML-RCSs to promote the development of secure next-generation communication devices with built-in PLSs.
Jezik:
Angleški jezik
Ključne besede:
machine learning
,
decision tree
,
covert communication
,
random communication system
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
22 str.
Številčenje:
Vol. 27, iss. 8, art. 815
PID:
20.500.12556/RUL-175499
UDK:
004.85:004.056:621.39
ISSN pri članku:
1099-4300
DOI:
10.3390/e27080815
COBISS.SI-ID:
244282627
Datum objave v RUL:
29.10.2025
Število ogledov:
128
Število prenosov:
41
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Entropy
Skrajšan naslov:
Entropy
Založnik:
MDPI
ISSN:
1099-4300
COBISS.SI-ID:
515806233
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
odločitveno drevo
,
prikrita komunikacija
,
naključni komunikacijski sistem
Projekti
Financer:
EC - European Commission
Program financ.:
HE
Številka projekta:
101081355
Naslov:
Machine learning for Sciences and Humanities
Akronim:
SMASH
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj