Podrobno

Prediction of intracranial aneurysm rupture from computed tomography angiography using an automated artificial intelligence framework
ID Choi, June Ho (Avtor), ID Sobisch, Jannik (Avtor), ID Kim, Minwoo (Avtor), ID Park, Jung Cheol (Avtor), ID Ahn, Jae Sung (Avtor), ID Kwun, Byung Duk (Avtor), ID Špiclin, Žiga (Avtor), ID Bizjak, Žiga (Avtor), ID Park, Wonhyoung (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,59 MB)
MD5: 866869F602C1B522E224ACBBAA30645E
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0010482525013174 Povezava se odpre v novem oknu

Izvleček
Intracranial aneurysms (IAs) are common vascular pathologies with a risk of fatal rupture. Human assessment of rupture risk is error prone, and treatment decision for unruptured IAs often rely on expert opinion and institutional policy. Therefore, we aimed to develop a computer-assisted aneurysm rupture prediction framework to help guide the decision-making process and create future decision criteria. This retrospective study included 335 patients with 500 IAs, of the 500 IAs studied, 250 were labeled as ruptured and 250 as unruptured. A skilled radiologist and a neurosurgeon visually examined the computed tomography angiography (CTA) images and labeled the IAs. For external validation we included 24 IAs, 10 ruptured and 15 unruptured, imaged with 3D rotational angiography (3D-RA) from the Aneurisk dataset. The pretrained nnU-net model was used for automated vessel segmentation, which was fed to pretrained PointNet++ models for vessel labeling and aneurysm segmentation. From these the latent keypoint representations were extracted as vessel shape and aneurysm shape features, respectively. Additionally, conventional features such as IAs morphological measurements, location and patient data, such as age, sex, were used for training and testing eight machine learning models for rupture status classification. The top-performing model, a random forest with feature selection, achieved an area under the receiver operating curve of 0.851, an accuracy of 0.782, a sensitivity of 0.804, and a specificity of 0.760. This model used 14 aneurysm shape features, seven conventional features, and one vessel shape feature. On the external dataset, it achieved an AUC of 0.805. While aneurysm shape features consistently contributed significantly across the classification models, vessel shape features contributed a small portion. Our proposed automated artificial intelligence framework could assist in clinical decision-making by assessing aneurysm rupture risk using screening tests, such as CTA and 3D-RA.

Jezik:Angleški jezik
Ključne besede:intracranial aneurysm, subarachnoid hemorrhage, rupture, machine learning, deep learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:8 str.
Številčenje:Vol. 197, part A, art. 110965
PID:20.500.12556/RUL-174956 Povezava se odpre v novem oknu
UDK:004.85
ISSN pri članku:1879-0534
DOI:10.1016/j.compbiomed.2025.110965 Povezava se odpre v novem oknu
COBISS.SI-ID:252732419 Povezava se odpre v novem oknu
Datum objave v RUL:10.10.2025
Število ogledov:176
Število prenosov:73
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computers in biology and medicine
Skrajšan naslov:Comput. biol. & med.
Založnik:Elsevier
ISSN:1879-0534
COBISS.SI-ID:23205637 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:intrakranialna anevrizma, možganska kap, ruptura, globoko učenje, strojno učenje

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0232
Naslov:Analiza biomedicinskih slik in signalov

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J2-3059
Naslov:Sprotno prilagajanje načrta protonske in radioterapije

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj