Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Few-shot identification of individuals in sports : the case of darts
ID
Vec, Val
(
Avtor
),
ID
Kos, Anton
(
Avtor
),
ID
Bie, Rongfang
(
Avtor
),
ID
Jiao, Libin
(
Avtor
),
ID
Wang, Haodi
(
Avtor
),
ID
Zhang, Zheng
(
Avtor
),
ID
Tomažič, Sašo
(
Avtor
),
ID
Umek, Anton
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,93 MB)
MD5: 4AC612D8D7D0F76F2FFB982F0F485A69
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2078-2489/16/10/865
Galerija slik
Izvleček
This paper contains an analysis of methods for person classification based on signals from wearable IMU sensors during sports. While this problem has been investigated in prior work, existing approaches have not addressed it within the context of few-shot or minimaldata scenarios. A few-shot scenario is especially useful as the main use case for person identification in sports systems is to be integrated into personalised biofeedback systems in sports. Such systems should provide personalised feedback that helps athletes learn faster. When introducing a new user, it is impractical to expect them to first collect many recordings. We demonstrate that the problem can be solved with over 90% accuracy in both open-set and closed-set scenarios using established methods. However, the challenge arises when applying few-shot methods, which do not require retraining the model to recognise new people. Most few-shot methods perform poorly due to feature extractors that learn dataset-specific representations, limiting their generalizability. To overcome this, we propose a combination of an unsupervised feature extractor and a prototypical network. This approach achieves 91.8% accuracy in the five-shot closed-set setting and 81.5% accuracy in the open-set setting, with a 99.6% rejection rate for unknown athletes.
Jezik:
Angleški jezik
Ključne besede:
biomechanical feedback
,
few-shot learning
,
open-set classification
,
person recognition
,
sensors
,
sports
,
unsupervised learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
20 str.
Številčenje:
Vol. 16, issue 10,art. 865
PID:
20.500.12556/RUL-174674
UDK:
621.39:681.5
ISSN pri članku:
2078-2489
COBISS.SI-ID:
252329219
Datum objave v RUL:
08.10.2025
Število ogledov:
160
Število prenosov:
48
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Information
Skrajšan naslov:
Information
Založnik:
MDPI
ISSN:
2078-2489
COBISS.SI-ID:
18497046
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
biomehanska povratna informacija
,
učenje z malo primeri
,
klasifikacija z odprtim naborom razredov
,
prepoznava oseb
,
senzorji
,
šport
,
nenadzorovano učenje
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0246
Naslov:
ICT4QoL - Informacijsko komunikacijske tehnologije za kakovostno življenje
Financer:
Central Universities of China
Številka projekta:
2024ZKPYZN01
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj