Podrobno

A novel approach to surrogate modelling of modal properties : mode-shape-adapted input parameter domain cutting
ID Kurent, Blaž (Avtor), ID Popovics, Bence (Avtor), ID Brank, Boštjan (Avtor), ID Friedman, Noemi (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (6,56 MB)
MD5: E16D7BBE300EBFC0F3874FD744D41F9F
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0888327025010829 Povezava se odpre v novem oknu

Izvleček
Surrogate models, also known as meta-models or proxy models, have become invaluable in structural engineering. They are a great addition to the finite element models, providing a fast computational alternative for approximating the quantity of interest (QOI). By the quick evaluation of the surrogate model, they can accelerate stochastic analyses of the structural response under the uncertainties of its input parameters (such as uncertainty quantification and sensitivity analysis) as well as the processes of optimisation and probabilistic model updating. They also offer an offline computation of the QOI which is particularly beneficial in scenarios of structural health monitoring where access to licenced software is limited. Surrogate modelling of modal properties is particularly challenging due to the mode degeneration phenomena, such as mode crossing, veering, and coalescence. The paper introduces a novel approach to surrogate modelling of modal properties that is accurate and reduces the required number of training points. The here-introduced mode-shape-adapted input parameter domain cutting (MOSAIC) surrogate modelling technique is a form of piecewise approximation. The novelty of this approach lies in the intelligent cutting of the parameter domain into subdomains, which identifies regions where the mode shapes smoothly change. As with all black-box surrogate modelling techniques, the method requires only a set of parameter samples and the computation of the corresponding QOIs (here the modal properties) by the finite element model. The paper presents the method in detail and provides three examples with two, six, and seven input parameters, respectively. In all of the examples, mode degeneration phenomena are present. The MOSIAC surrogate model achieves significantly better accuracy than the benchmark surrogate model, which is trained over the whole parameter domain without cutting it. The accuracy of the MOSAIC surrogate model outperforms even the benchmark model that is trained on ten times as many training points. This indicates a large time-saving potential in building surrogate models of modal properties. The accuracy and efficiency of the MOSAIC method are further enhanced by the proposed active learning approach.

Jezik:Angleški jezik
Ključne besede:surrogate model, proxy model, metamodel, modal properties, natural frequency, mode shape, eigenvector, Mosaic
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:20 str.
Številčenje:Vol. 240, art. 113381
PID:20.500.12556/RUL-174160 Povezava se odpre v novem oknu
UDK:519.62:510.643
ISSN pri članku:1096-1216
DOI:10.1016/j.ymssp.2025.113381 Povezava se odpre v novem oknu
COBISS.SI-ID:250774787 Povezava se odpre v novem oknu
Datum objave v RUL:29.09.2025
Število ogledov:165
Število prenosov:75
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:nadomestni model, modalne lastnosti, lastna frekvenca, lastna oblika, lastni vektor

Projekti

Financer:EC - European Commission
Številka projekta:101092052
Naslov:BUILDing knowledge book in the blockCHAIN distributed ledger. Trustworthy building life-cycle knowledge graph for sustainability and energy efficiency
Akronim:BUILDCHAIN

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:RRF-2.3.1-21-2022-00004
Naslov:Artificial Intelligence National Laboratory

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj