Podrobno

Second FRCSyn-onGoing : winning solutions and post-challenge analysis to improve face recognition with synthetic data
ID DeAndres-Tame, Ivan (Avtor), ID Tolosana, Ruben (Avtor), ID Melzi, Pietro (Avtor), ID Vera-Rodriguez, Ruben (Avtor), ID Kim, Minchul (Avtor), ID Rathgeb, Christian (Avtor), ID Liu, Xiaoming (Avtor), ID Gomez, Luis F. (Avtor), ID Morales, Aythami (Avtor), ID Fierrez, Julian (Avtor), ID Štruc, Vitomir (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,01 MB)
MD5: 172251CA2BFF9B4334110E8F3111165B
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1566253525001721 Povezava se odpre v novem oknu

Izvleček
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.

Jezik:Angleški jezik
Ključne besede:sintetični podatki, razpoznavanje obrazov, globoko učenje, difuzija, generativna nasprotniška omrežja
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:19 str.
Številčenje:Vol. 120, art. 103099
PID:20.500.12556/RUL-173542 Povezava se odpre v novem oknu
UDK:004.93
ISSN pri članku:1872-6305
DOI:10.1016/j.inffus.2025.103099 Povezava se odpre v novem oknu
COBISS.SI-ID:229483523 Povezava se odpre v novem oknu
Datum objave v RUL:18.09.2025
Število ogledov:188
Število prenosov:68
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Information fusion
Založnik:Elsevier
ISSN:1872-6305
COBISS.SI-ID:148692227 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:sinthetic data, face recognition, deep learning, diffusion, generative adversarial networks

Projekti

Financer:Ministerio de Ciencia e Innovación
Številka projekta:PID2021-126521OBI00 MICINN/FEDER
Naslov:INTER-ACTION

Financer:EC - European Commission
Program financ.:European Union - NextGenerationEU
Številka projekta:PRTR TSI-100927-2023-2
Naslov:Cátedra ENIA UAM-VERIDAS en IA Responsable

Financer:German Federal Ministry of Education and Research

Financer:Hessian Ministry of Higher Education, Research, Science, and the Arts

Financer:National Research Center for Applied Cybersecurity

Financer:Institute for Basic Science Republic of Korea
Številka projekta:IBS-R029-C2

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0250
Naslov:Metrologija in biometrični sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj