Podrobno

Generator sintetičnih slik za učenje metod za štetje objektov
ID Koncilja, Vid (Avtor), ID Kristan, Matej (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Pelhan, Jer (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (8,22 MB)
MD5: 5D5E128EFA66743DAC9FED88AEF9C350

Izvleček
V tej nalogi predstavljamo sistem za generiranje učnih podatkov, namenjen izboljšanju učenja modelov za štetje objektov. Obstoječe zbirke pogosto vsebujejo nepravilne ali manjkajoče anotacije ter so večinoma omejene na prevladujoče kategorije objektov. Posledično se modeli pogosto naučijo preštevati zgolj dominantne razrede. Naš sistem, ki smo ga poimenovali GeCoGen, te omejitve presega z nadzorovanim generiranjem slik, ki omogoča prilagajanje raznolikosti kategorij, porazdelitve števila instanc in deleža posameznih razredov. Poleg tega ponuja parametre za simulacijo prekrivanja, minimalne vidljivosti ter delne zakritosti instanc. Z uporabo sistema GeCoGen smo ustvarili učno zbirko GeCoDa, ki obsega 7,900 slik in vključuje 79 kategorij, pri čemer posamezna slika v povprečju vsebuje 1.87 različnih kategorij. Vpliv nove množice smo ovrednotili na trenutno najnaprednejšem števcu splošnih objektov GeCo. Model, učen na kombinaciji GeCoDa in FSC-147, na množici MCAC dosega 61% izboljšavo mere MAE v primerjavi z modelom, učenim izključno na FSC-147, medtem ko model, učen samo na GeCoDa, na množici CA-44 dosega 58% izboljšavo mere MAE glede na model, učen na FSC-147.

Jezik:Slovenski jezik
Ključne besede:računalniški vid, štetje objektov, učenje z malo učnimi primeri, generiranje zbirke slik
Vrsta gradiva:Diplomsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2025
PID:20.500.12556/RUL-173267 Povezava se odpre v novem oknu
COBISS.SI-ID:253381891 Povezava se odpre v novem oknu
Datum objave v RUL:15.09.2025
Število ogledov:160
Število prenosov:37
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:A synthetic image generator for training object counting methods
Izvleček:
In this thesis we present a data generation system designed to improve training of object‑counting models. Existing datasets often contain incorrect or missing annotations and are typically biased toward a single dominant object category, which leads models to learn to count only the dominant classes. Our system, denoted GeCoGen, mitigates these limitations by controlled image generation that allows adjusting category diversity, instance‑count distributions, and class balance. It also provides parameters to simulate occlusion, minimum visibility, and partial coverage of instances. Using GeCoGen we created the training dataset GeCoDa, comprising 7,900 images across 79 categories, with an average of 1.87 different categories per image. We evaluated the impact of this dataset on the state‑of‑the‑art general object counter GeCo. GeCo was trained on three variants: GeCoDa, FSC-147, and the combined GeCoDa and FSC-147. Performance was measured on FSC-147, CA-44 and MCAC. The model trained on the combined dataset reduced MAE on MCAC by 61% compared to the model trained only on FSC-147, while the model trained solely on GeCoDa achieved a 58% MAE reduction on CA-44 relative to the FSC-147 baseline.

Ključne besede:computer vision, object counting, few-shot learning, image dataset generation

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj