Podrobno

Validation of reading as a predictor of mild cognitive impairment
ID Groznik, Vida (Avtor), ID Možina, Martin (Avtor), ID Lazar, Timotej (Avtor), ID Georgiev, Dejan (Avtor), ID Semeja, Aleš (Avtor), ID Sadikov, Aleksander (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,68 MB)
MD5: 8FC5EDBC39C7D3EF8D2B986395088F32
URLURL - Izvorni URL, za dostop obiščite https://www.nature.com/articles/s41598-025-94583-0 Povezava se odpre v novem oknu

Izvleček
Mild cognitive impairment (MCI) is a neurocognitive disorder that precedes Alzheimer’s disease, but also other types of dementia. The use of reading tasks, when paired with eye-tracking technology, has been suggested as an effective biomarker for identifying MCI and distinguishing it from healthy individuals. The objective of this study was twofold: (1) to explore the disparities in eye movements during reading between individuals with MCI and healthy controls and train a predictive model to detect MCI, and (2) to validate these findings on a large independent dataset. We developed features for a model designed to automatically detect cognitive impairment based on the data of 115 subjects; 62 cognitively impaired and 53 healthy controls. Each subject was subjected to a neurological evaluation, a thorough psychological analysis, and completed a brief reading exercise while their eye movements were monitored using an eye-tracker. Their eye movements were characterised by patterns of saccades and fixations and were analysed across both groups. Several characteristics showed very high statistical significance, indicating differences in gaze behaviour between the groups. These characteristics were then employed to develop a machine learning model that differentiates cognitively impaired individuals from healthy controls. For the validation purposes, we ran a separate study with 99 new subjects using the same experimental design. The model reached about 75% AUROC. These results confirm that reading tasks can serve as a basis for early detection of MCI; however, complementary eye-tracking tasks are needed to further increase the detection accuracy.

Jezik:Angleški jezik
Ključne besede:eye-tracking, machine learning, mild cognitive impairment, validation, reading characteristics
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:11 str.
Številčenje:Vol. 15, art. ǂ12834
PID:20.500.12556/RUL-171596 Povezava se odpre v novem oknu
UDK:004.85:616.8
ISSN pri članku:2045-2322
DOI:10.1038/s41598-025-94583-0 Povezava se odpre v novem oknu
COBISS.SI-ID:232749059 Povezava se odpre v novem oknu
Datum objave v RUL:28.08.2025
Število ogledov:199
Število prenosov:46
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Scientific reports
Skrajšan naslov:Sci. rep.
Založnik:Nature Publishing Group
ISSN:2045-2322
COBISS.SI-ID:18727432 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:sledenje očesnim gibom, strojno učenje, blag kognitivni upad, validacija, bralne karakteristike

Projekti

Financer:Drugi - Drug financer ali več financerjev
Naslov:Project NEUS from the European Institute of Innovation and Technology (EIT) Health KIC

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0209-2022
Naslov:Umetna inteligenca in inteligentni sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj