Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Evaluation of privacy and security measures when using LLMs for construction management
ID
Brelih, Anja
(
Avtor
),
ID
Srdič, Aleksander
(
Avtor
),
ID
Klinc, Robert
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(407,76 KB)
MD5: 9837E2DCC86E1EEB51BD49A366E9B32B
URL - Izvorni URL, za dostop obiščite
https://www.iaarc.org/publications/2025_proceedings_of_the_14th_ccc_zadar_croatia/evaluation_of_privacy_and_security_measures_when_using_llms_for_construction_management.html
Galerija slik
Izvleček
The rapid integration of Large Language Models (LLMs) into AI-driven project management systems is transforming the construction industry by enhancing efficiency, automation and decision-making. However, the use of LLMs in the processing of sensitive construction documents raises critical privacy and data security concerns. This paper explores the challenges of handling sensitive information with a focus on methods for removing sensitive data from files before they are processed for LLM applications. Before text data is tokenised and integrated into an LLM, it is important to implement pre-processing techniques that ensure data privacy. Sensitive information, such as financial details, personal data and project-specific proprietary content, must be identified and removed or masked at document level. Techniques such as Named Entity Recognition (NER) can be used to identify personally identifiable information, which can then be redacted or replaced with anonymised placeholders. Automated text redaction and metadata removal tools further enhance security by preventing the unintentional disclosure of confidential content. By ensuring that sensitive data is removed before the documents are processed by LLMs, the construction industry can utilise AI-powered tools while adhering to strict data privacy and security standards. This paper evaluates the effectiveness of these pre-processing techniques and discusses their importance for construction project management.
Jezik:
Angleški jezik
Ključne besede:
large language models
,
data privacy
,
NER
,
construction management
,
document pre-processing
Vrsta gradiva:
Članek v reviji
Tipologija:
1.08 - Objavljeni znanstveni prispevek na konferenci
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
9 str.
PID:
20.500.12556/RUL-171577
UDK:
004.43:624
DOI:
10.22260/CCC2025/0068
COBISS.SI-ID:
246892035
Datum objave v RUL:
28.08.2025
Število ogledov:
285
Število prenosov:
59
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del monografije
Naslov:
CCC 2025 - Zadar, Croatia : proceedings of the 14th Creative Construction Conference
Uredniki:
Miroslaw J. Skibniewski, Miklós Hajdú, Žiga Turk
Kraj izida:
[Zadar]
Založnik:
International Association for Automation and Robotics in Construction (IAARC)
Leto izida:
2025
COBISS.SI-ID:
246885635
Naslov zbirke:
Proceedings of the ... ISARC
ISSN zbirke:
2413-5844
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
veliki jezikovni modeli
,
zasebnost podatkov
,
NER
,
operativno gradbeništvo
,
predobdelava dokumentov
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0210
Naslov:
E-Gradbeništvo
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj