Podrobno

Edge-transitive cubic graphs: analysis, cataloguing and enumeration
ID Conder, Marston D. E. (Avtor), ID Potočnik, Primož (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,64 MB)
MD5: 7D7D425647CA15EB79DD83A24AC868C1
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S002186932500448X Povezava se odpre v novem oknu

Izvleček
This paper deals with finite cubic (3-regular) graphs whose automorphism group acts transitively on the edges of the graph. Such graphs split into two broad classes, namely arc-transitive and semisymmetric cubic graphs, and then these divide respectively into 7 types (according to a classification by Djoković and Miller (1980) [17]) and 15 types (according to a classification by Goldschmidt (1980) [23]), in terms of certain group amalgams. Such graphs of small order were previously known up to orders 2048 and 768, respectively, and we have extended each of the two lists of all such graphs up to order 10000. Before describing how we did that, we carry out an analysis of the 22 amalgams, to show which of the finitely-presented groups associated with the 15 Goldschmidt amalgams can be faithfully embedded in one or more of the other 21 (as subgroups of finite index), complementing what is already known about such embeddings of the 7 Djoković-Miller groups in each other. We also give an example of a graph of each of the 22 types, and in most cases, describe the smallest such graph, and we then use regular coverings to prove that there are infinitely many examples of each type. Finally, we discuss the asymptotic enumeration of the graph orders, proving that if $f_{\mathcal C}(n)$ is the number of cubic edge-transitive graphs of type ${\mathcal C}$ on at most $n$ vertices, then there exist positive real constants $a$ and $b$ and a positive integer $n_0$ such that $n^{a \log(n)} \le f_{\mathcal C}(n) \le n^{b \log(n)}$ for all $n\ge 0$.

Jezik:Angleški jezik
Ključne besede:groups, graphs, symmetry, amalgams, cover
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.01.2026
Leto izida:2026
Št. strani:Str. 703-737
Številčenje:Vol. 685
PID:20.500.12556/RUL-171239 Povezava se odpre v novem oknu
UDK:519.17
ISSN pri članku:0021-8693
DOI:10.1016/j.jalgebra.2025.07.035 Povezava se odpre v novem oknu
COBISS.SI-ID:246127363 Povezava se odpre v novem oknu
Datum objave v RUL:21.08.2025
Število ogledov:142
Število prenosov:79
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Journal of algebra
Skrajšan naslov:J. algebra
Založnik:Elsevier
ISSN:0021-8693
COBISS.SI-ID:1310986 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Projekti

Financer:New Zealand’s Marsden Fund
Številka projekta:UOA2320

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0294
Naslov:Računsko intenzivne metode v teoretičnem računalništvu, diskretni matematiki, kombinatorični optimizaciji ter numerični analizi in algebri z uporabo v naravoslovju in družboslovju

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J1-4351
Naslov:Generiranje, analiza in katalogizacija simetričnih grafov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj