Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Explaining and predicting microbiological water quality for sustainable management of drinking water treatment facilities
ID
Volf, Goran
(
Avtor
),
ID
Sušanj Čule, Ivana
(
Avtor
),
ID
Atanasova, Nataša
(
Avtor
),
ID
Zorko, Sonja
(
Avtor
),
ID
Ožanić, Nevenka
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(31,58 MB)
MD5: B58E88DF3DEE7F2C813478FFDDF30EE7
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2071-1050/17/15/6659
Galerija slik
Izvleček
The continuous variability in the microbiological quality of surface waters presents significant challenges for ensuring the production of safe drinking water in compliance with public health regulations. Inadequate treatment of surface waters can lead to the presence of pathogenic microorganisms in the drinking water supply, posing serious risks to public health. This research presents an in-depth data analysis using a machine learning tool for the induction of models to describe and predict microbiological water quality fo the sustainable management of the Butoniga drinking water treatment facility in Istria(Croatia). Specifically, descriptive and predictive models for total coliforms and E. coli bacteria (i.e., classes), which are recognized as key sanitary indicators of microbiological contamination under both EU and Croatian water quality legislation, were developed. The descriptive models provided useful information about the main environmental f actors that influence the microbiological quality of water. The most significant influential factors were found to be pH, water temperature, and water turbidity. On the other hand, the predictive models were developed to estimate the concentrations of total coliforms and E. coli bacteria seven days in advance using model trees due to their interpretability and potential integration into decision support systems. The predictive models demonstrated satisfactory performance, with a correlation coefficient of 0.72 for total coliforms, and moderate predictive accuracy for E. coli bacteria, with a correlation coefficient of 0.48. The resulting models offer actionable insights for optimizing operational responses in water treatment processes based on real-time and predictive microbiological conditions in the Butoniga reservoir.
Jezik:
Angleški jezik
Ključne besede:
Butoniga reservoir
,
Butoniga DWTF
,
microbiological water quality
,
physico-chemical parameters
,
total coliforms
,
E. coli bacteria
,
prediction
,
machine learning
,
sustainable management
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
26 str.
Številčenje:
Vol. 17, iss. 15, art. 6659
PID:
20.500.12556/RUL-171093
UDK:
556.115:579.68
ISSN pri članku:
2071-1050
DOI:
10.3390/su17156659
COBISS.SI-ID:
244690691
Datum objave v RUL:
04.08.2025
Število ogledov:
248
Število prenosov:
66
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Sustainability
Skrajšan naslov:
Sustainability
Založnik:
MDPI
ISSN:
2071-1050
COBISS.SI-ID:
5324897
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
rezervoar Butoniga
,
microbiološki parametri kakovosti vode
,
skupne coliformne bakterije
,
E. Coli
,
napoved
,
strojno učenje
Projekti
Financer:
UNIRI - University of Rijeka
Program financ.:
Decision support system for improvement and management of treatment processes on drinking water treatment plant Butoniga
Številka projekta:
ZIP-UNIRI-1500-3-22
Financer:
UNIRI - University of Rijeka
Program financ.:
Development of the methodology for the condition evaluation, protection and revitalization on small urban water resources
Številka projekta:
ZIP-UNIRI-1500-2-22
Financer:
UNRI - University of Rijeka
Program financ.:
Hydrology of water resources and risk identification of consequences of climate changes in karst areas
Številka projekta:
tehnic23-74
Financer:
UNRI - University of Rijeka
Program financ.:
Implementing innovative methodologies, technologies and tools to ensure sustainable water management
Številka projekta:
tehnic23-67
Financer:
UNRI - University of Rijeka
Program financ.:
Challenges in Water Resources Management in Times of Climate Change Regarding the Production of Drinking Water
Številka projekta:
uniri-iz-25-18
Financer:
CRESCO Adria, Interreg
Program financ.:
Climate RESiliEnt COastal planning in Adriatic
Številka projekta:
ITHR0200245
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj