Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
A multilevel bridge corrosion detection method by transformer‑based segmentation in a stitched view
ID
Lu, Ziyue
(
Avtor
),
ID
Jiang, Tengjiao
(
Avtor
),
ID
Slavič, Janko
(
Avtor
),
ID
Frøseth, Gunnstein T.
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,67 MB)
MD5: B076B821EC0ABEF26836D7282B51F200
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s13349-025-00928-8#citeas
Galerija slik
Izvleček
Corrosion is one of the main damage mechanisms in civil engineering structures today. Rapid identification and accurate assessment of corrosion in structures are essential to ensure the efficient allocation of limited funds for the maintenance and renewal of existing structures. Vision-based neural networks have been widely used in corrosion detection, in which convolutional neural network (CNN)-like models remain dominant. However, these conventional network models exhibit a saturating performance. Because of the self-attention mechanism, the transformer is the newest breakthrough in computer vision and is becoming state of the art. As the complexity of structures increases, transformer-based methods have no saturating performance. This study proposes a corrosion localization and evaluation architecture for a larger view based on semantic segmentation and image stitching for automatic localization and diagnosis of corrosion from stitched images. The experimental results showed that the proposed method achieved better corrosion detection performance (F1-score = 68.2%) than that of the mainstream CNN-like models U-Net (F1-score = 61.8%) and DeepLabV3 + (F1-score = 60.1%). Image stitching is utilized for corrosion segmentation in larger view images, and the field test shows that the proposed architecture could stitch corrosion prediction from different images.
Jezik:
Angleški jezik
Ključne besede:
deep learning
,
bridge corrosion
,
semantic segmentation
,
image stitching
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
15 str.
Številčenje:
Vol. 15
PID:
20.500.12556/RUL-170861
UDK:
621
ISSN pri članku:
2190-5479
DOI:
10.1007/s13349-025-00928-8
COBISS.SI-ID:
229363971
Datum objave v RUL:
18.07.2025
Število ogledov:
205
Število prenosov:
27
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Journal of civil structural health monitoring
Skrajšan naslov:
J. civ. struct. health monit.
Založnik:
Springer
ISSN:
2190-5479
COBISS.SI-ID:
518457113
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
globoko učenje
,
korozija mostov
,
semantična segmentacija
,
spajanje slik
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj