Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Machine learning-based detection of cognitive impairment from eye-tracking in smooth pursuit tasks
ID
Groznik, Vida
(
Avtor
),
ID
De Gobbis, Andrea
(
Avtor
),
ID
Georgiev, Dejan
(
Avtor
),
ID
Semeja, Aleš
(
Avtor
),
ID
Sadikov, Aleksander
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,48 MB)
MD5: 075EE363E6E7B472F92B4629FF7C4F07
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2076-3417/15/14/7785
Galerija slik
Izvleček
Mild cognitive impairment represents a transitional phase between healthy ageing and dementia, including Alzheimer’s disease. Early detection is essential for timely clinical intervention. This study explores the viability of smooth pursuit eye movements (SPEM) as a non-invasive biomarker for cognitive impairment. A total of 115 participants—62 with cognitive impairment and 53 cognitively healthy controls—underwent comprehensive neuropsychological assessments followed by an eye-tracking task involving smooth pursuit of horizontally and vertically moving stimuli at three different speeds. Quantitative metrics such as tracking accuracy were extracted from the eye movement recordings. These features were used to train machine learning models to distinguish cognitively impaired individuals from controls. The best-performing model achieved an area under the ROC curve (AUC) of approximately 68 %, suggesting that SPEM-based assessment has potential as part of an ensemble of eye-tracking based screening methods for early cognitive decline. Of course, additional paradigms or task designs are required to enhance diagnostic performance.
Jezik:
Angleški jezik
Ključne besede:
machine learning
,
eye-tracking
,
smooth pursuit
,
non-invasive biomarker
,
cognitive impairment
,
early detection of cognitive decline
,
detection of mild cognitive impairment
,
dementia
,
Alzheimer's disease
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
14 str.
Številčenje:
Vol. 15, iss. 14, art.7785
PID:
20.500.12556/RUL-170748
UDK:
004.85:616.8
ISSN pri članku:
2076-3417
DOI:
10.3390/app15147785
COBISS.SI-ID:
242359043
Datum objave v RUL:
14.07.2025
Število ogledov:
329
Število prenosov:
53
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied sciences
Skrajšan naslov:
Appl. sci.
Založnik:
MDPI
ISSN:
2076-3417
COBISS.SI-ID:
522979353
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
sledenje očesnim gibom
,
gladko sledenje
,
neinvaziven biomarker
,
kognitivni upad
,
zgodnje odkrivanje kognitivnega upada
,
odkrivanje blage kognitivne motnje
,
demenca
,
Alzheimerjeva bolezen
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Project NEUS
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0209
Naslov:
Umetna inteligenca in inteligentni sistemi
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj