Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Uncertainty quantification for deep learning-based metastatic lesion segmentation on whole body PET/CT
ID
Schott, Brayden
(
Avtor
),
ID
Santoro Fernandes, Victor
(
Avtor
),
ID
Klaneček, Žan
(
Avtor
),
ID
Perlman, Scott
(
Avtor
),
ID
Jeraj, Robert
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,29 MB)
MD5: E4AB6009F8B2BD0E674C99447A41A68A
Galerija slik
Izvleček
Objective. Deep learning models are increasingly being implemented for automated medical image analysis to inform patient care. Most models, however, lack uncertainty information, without which the reliability of model outputs cannot be ensured. Several uncertainty quantification (UQ) methods exist to capture model uncertainty. Yet, it is not clear which method is optimal for a given task. The purpose of this work was to investigate several commonly used UQ methods for the critical yet understudied task of metastatic lesion segmentation on whole body PET/CT. Approach. 59 whole body $^{68}$Ga-DOTATATE PET/CT images of patients undergoing theranostic treatment of metastatic neuroendocrine tumors were used in this work. A 3D U-Net was trained for lesion segmentation following five-fold cross validation. Uncertainty measures derived from four UQ methods—probability entropy, Monte Carlo dropout, deep ensembles, and test time augmentation—were investigated. Each uncertainty measure was assessed across four quantitative evaluations: (1) its ability to detect artificially degraded image data at low, medium, and high degradation magnitudes; (2) to detect false-positive (FP) predicted regions; (3) to recover false-negative (FN) predicted regions; and (4) to establish correlations with model biomarker extraction and segmentation performance metrics. Main results. Test time augmentation and probability entropy respectively achieved the highest and lowest degraded image detection at low (AUC = 0.54 vs. 0.68), medium (AUC = 0.70 vs. 0.82), and high (AUC = 0.83 vs. 0.90) degradation magnitudes. For detecting FPs, all UQ methods achieve strong performance, with AUC values ranging narrowly between 0.77 and 0.81. FN region recovery performance was strongest for test time augmentation and weakest for probability entropy. Performance for the correlation analysis was mixed, where the strongest performance was achieved by test time augmentation for SUV$_{\mathrm{total}}$ capture ($\rho$ = 0.57) and segmentation Dice coefficient ($\rho$ = 0.72), by Monte Carlo dropout for SUV$_{\mathrm{mean}}$ capture ($\rho$ = 0.35), and by probability entropy for segmentation cross entropy ( = 0.96). Significance. Overall, test time augmentation demonstrated superior UQ performance and is recommended for use in metastatic lesion segmentation task. It also offers the advantage of being post hoc and computationally efficient. In contrast, probability entropy performed the worst, highlighting the need for advanced UQ approaches for this task.
Jezik:
Angleški jezik
Ključne besede:
medical physics
,
medical imaging
,
tumors
,
deep learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
17 str.
Številčenje:
Vol. 70, no. 11, art. no. 115009
PID:
20.500.12556/RUL-169797
UDK:
616-073:53
ISSN pri članku:
0031-9155
DOI:
10.1088/1361-6560/add9df
COBISS.SI-ID:
239055363
Datum objave v RUL:
11.06.2025
Število ogledov:
381
Število prenosov:
42
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Physics in Medicine & Biology
Skrajšan naslov:
Phys. Med. Biol.
Založnik:
American Institute of Physics
ISSN:
0031-9155
COBISS.SI-ID:
26128896
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
medicinska fizika
,
medicinsko slikanje
,
tumorji
,
globoko učenje
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj