Podrobno

Parametrized physics-informed deep operator networks for design of experiments applied to lithium-ion-battery cells
ID Brendel, Philipp (Avtor), ID Mele, Igor (Avtor), ID Rosskopf, Andreas (Avtor), ID Katrašnik, Tomaž (Avtor), ID Lorentz, Vincent (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,90 MB)
MD5: 9C86D1860054A745172AB6386BBD3C13
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S2352152X25017682 Povezava se odpre v novem oknu

Izvleček
Model-based state estimation of lithium-ion batteries relies on a robust, yet efficient parametrization of the underlying model under different conditions, which can be analyzed and improved through the lenses of Design-of-Experiments (DoE) methodologies. This paper presents parametrized physics-informed deep operator networks (PI-DeepONets) trained without any measured or synthetic data to predict solutions of a Single-Particle-Model for varying current profiles and electrode-specific diffusivity values. The prediction accuracy is evaluated based on three use cases representing three sets of current profiles featuring constant, smoothly time-dependent and non-smooth pulse profiles. After training PI-DeepONets, lithium concentration profiles are predicted within milliseconds achieving normalized percentage errors on the particle surfaces below 0.3% for constant or smoothly time-dependent current profiles and below 2% for non-smooth pulse profiles. The fast approximation of Fisher-Information-Matrices (FIMs) based on the trained PI-DeepONets offers additional speed-up potentials for DoE methodologies and yields a speed-up factor of 30 in the considered use case when compared to classical FIM approximation via finite differences on numerical reference solutions.

Jezik:Angleški jezik
Ključne besede:Li-ion batteries, modelling, design of experiment DoE, machine learning, physics informed neural networks
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:14 str.
Številčenje:Vol. 128, art. 117055
PID:20.500.12556/RUL-169531 Povezava se odpre v novem oknu
UDK:621.35
ISSN pri članku:2352-152X
DOI:10.1016/j.est.2025.117055 Povezava se odpre v novem oknu
COBISS.SI-ID:237949187 Povezava se odpre v novem oknu
Datum objave v RUL:02.06.2025
Število ogledov:404
Število prenosov:55
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Journal of energy storage
Založnik:Elsevier
ISSN:2352-152X
COBISS.SI-ID:526511129 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Projekti

Financer:EC - European Commission
Številka projekta:101103755
Naslov:Fast-track hybrid testing platform for the development of battery systems
Akronim:FASTEST

Financer:UKRI - UK Research and Innovation
Številka projekta:10078013
Naslov:Fast-track hybrid testing platform for the development of battery systems
Akronim:FASTEST

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj