Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Parametrized physics-informed deep operator networks for design of experiments applied to lithium-ion-battery cells
ID
Brendel, Philipp
(
Avtor
),
ID
Mele, Igor
(
Avtor
),
ID
Rosskopf, Andreas
(
Avtor
),
ID
Katrašnik, Tomaž
(
Avtor
),
ID
Lorentz, Vincent
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,90 MB)
MD5: 9C86D1860054A745172AB6386BBD3C13
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S2352152X25017682
Galerija slik
Izvleček
Model-based state estimation of lithium-ion batteries relies on a robust, yet efficient parametrization of the underlying model under different conditions, which can be analyzed and improved through the lenses of Design-of-Experiments (DoE) methodologies. This paper presents parametrized physics-informed deep operator networks (PI-DeepONets) trained without any measured or synthetic data to predict solutions of a Single-Particle-Model for varying current profiles and electrode-specific diffusivity values. The prediction accuracy is evaluated based on three use cases representing three sets of current profiles featuring constant, smoothly time-dependent and non-smooth pulse profiles. After training PI-DeepONets, lithium concentration profiles are predicted within milliseconds achieving normalized percentage errors on the particle surfaces below 0.3% for constant or smoothly time-dependent current profiles and below 2% for non-smooth pulse profiles. The fast approximation of Fisher-Information-Matrices (FIMs) based on the trained PI-DeepONets offers additional speed-up potentials for DoE methodologies and yields a speed-up factor of 30 in the considered use case when compared to classical FIM approximation via finite differences on numerical reference solutions.
Jezik:
Angleški jezik
Ključne besede:
Li-ion batteries
,
modelling
,
design of experiment DoE
,
machine learning
,
physics informed neural networks
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
14 str.
Številčenje:
Vol. 128, art. 117055
PID:
20.500.12556/RUL-169531
UDK:
621.35
ISSN pri članku:
2352-152X
DOI:
10.1016/j.est.2025.117055
COBISS.SI-ID:
237949187
Datum objave v RUL:
02.06.2025
Število ogledov:
404
Število prenosov:
55
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Journal of energy storage
Založnik:
Elsevier
ISSN:
2352-152X
COBISS.SI-ID:
526511129
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Projekti
Financer:
EC - European Commission
Številka projekta:
101103755
Naslov:
Fast-track hybrid testing platform for the development of battery systems
Akronim:
FASTEST
Financer:
UKRI - UK Research and Innovation
Številka projekta:
10078013
Naslov:
Fast-track hybrid testing platform for the development of battery systems
Akronim:
FASTEST
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj