Podrobno

Multinomial logistic regression algorithm for the classification of patients with parkinsonisms
ID Štokelj, Eva (Avtor), ID Rus, Tomaž (Avtor), ID Jamšek, Jan (Avtor), ID Trošt, Maja (Avtor), ID Simončič, Urban (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,88 MB)
MD5: E83E0D0C7780C9DBB333052FC9F52844
URLURL - Izvorni URL, za dostop obiščite https://ejnmmires.springeropen.com/articles/10.1186/s13550-025-01210-0 Povezava se odpre v novem oknu

Izvleček
Background: Accurate differential diagnosis of neurodegenerative parkinsonisms is challenging due to overlapping early symptoms and high rates of misdiagnosis. To improve the diagnostic accuracy, we developed an integrated classification algorithm using multinomial logistic regression and Scaled Subprofile Model/Principal Component Analysis (SSM/PCA) applied to 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) brain images. In this novel classification approach, SSM/PCA is applied to FDG-PET brain images of patients with various parkinsonisms, which are compared against the constructed undetermined images. This process involves spatial normalization of the images and dimensionality reduction via PCA. The resulting principal components are then used in a multinomial logistic regression model, which generates disease-specific topographies that can be used to classify new patients. The algorithm was trained and optimized on a cohort of patients with neurodegenerative parkinsonisms and subsequently validated on a separate cohort of patients with parkinsonisms. Results: The Area Under the Curve (AUC) values were the highest for progressive supranuclear palsy (PSP) (AUC = 0.95), followed by Parkinson’s disease (PD) (AUC = 0.93) and multiple system atrophy (MSA) (AUC = 0.90). When classifying the patients based on their calculated probability for each group, the desired tradeoff between sensitivity and specificity had to be selected. With a 99% probability threshold for classification into a disease group, 82% of PD patients, 29% of MSA patients, and 77% of PSP patients were correctly identified. Only 5% of PD, 6% of MSA and 6% of PSP patients were misclassified, whereas the remaining patients (13% of PD, 65% of MSA and 18% of PSP) are undetermined by our classification algorithm. Conclusions: Compared to existing algorithms, this approach offers comparable accuracy and reliability in diagnosing PD, MSA, and PSP with no need of healthy control images. It can also distinguish between multiple types of parkinsonisms simultaneously and offers the flexibility to easily accommodate new groups.

Jezik:Angleški jezik
Ključne besede:neurology, parkinsonisms, brain, medical imaging
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
MF - Medicinska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:14 str.
Številčenje:Vol. 15, art. no. 24
PID:20.500.12556/RUL-168087 Povezava se odpre v novem oknu
UDK:616.831
ISSN pri članku:2191-219X
DOI:10.1186/s13550-025-01210-0 Povezava se odpre v novem oknu
COBISS.SI-ID:230595331 Povezava se odpre v novem oknu
Datum objave v RUL:28.03.2025
Število ogledov:390
Število prenosov:215
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:EJNMMI research
Skrajšan naslov:EJNMMI res.
Založnik:Springer
ISSN:2191-219X
COBISS.SI-ID:1722540 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:nevrologija, parkinsonizmi, možgani, medicinsko slikanje

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0389-2022
Naslov:Medicinska fizika

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J7-3150-2021
Naslov:Računalniško-podprta diferencialna diagnoza parkinsonizmov na osnovi FDG-PET slikanja

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:J7-2600-2020
Naslov:Presnovne možganske spremembe nevrodegenerativnih demenc in njihove korelacije s histopatološkimi spremembami v možganih

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj