Podrobno

A novel explainable machine learning-based healthy ageing scale
ID Gašperlin Stepančič, Katarina (Avtor), ID Ramovš, Ana (Avtor), ID Ramovš, Jože (Avtor), ID Košir, Andrej (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,11 MB)
MD5: C3E2C311C76D4BF2EAA075AB552201B3
URLURL - Izvorni URL, za dostop obiščite https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-024-02714-w Povezava se odpre v novem oknu

Izvleček
Background Ageing is one of the most important challenges in our society. Evaluating how one is ageing is important in many aspects, from giving personalized recommendations to providing insight for long-term care eligibility. Machine learning can be utilized for that purpose, however, user reservations towards “black-box” predictions call for increased transparency and explainability of results. This study aimed to explore the potential of developing a machine learning-based healthy ageing scale that provides explainable results that could be trusted and understood by informal carers.Methods In this study, we used data from 696 older adults collected via personal field interviews as part of independent research. Explanatory factor analysis was used to find candidate healthy ageing aspects. For visualization of key aspects, a web annotation application was developed. Key aspects were selected by gerontologists who later used web annotation applications to evaluate healthy ageing for each older adult on a Likert scale. Logistic Regression, Decision Tree Classifier, Random Forest, KNN, SVM and XGBoost were used for multi-classification machine learning. AUC OvO, AUC OvR, F1, Precision and Recall were used for evaluation. Finally, SHAP was applied to best model predictions to make them explainable. Results The experimental results show that human annotations of healthy ageing could be modelled using machine learning where among several algorithms XGBoost showed superior performance. The use of XGBoost resulted in 0.92 macro-averaged AuC OvO and 0.76 macro-averaged F1. SHAP was applied to generate local explanations for predictions and shows how each feature is influencing the prediction. Conclusion The resulting explainable predictions make a step toward practical scale implementation into decision support systems. The development of such a decision support system that would incorporate an explainable model could reduce user reluctance towards the utilization of AI in healthcare and provide explainable and trusted insights to informal carers or healthcare providers as a basis to shape tangible actions for improving ageing. Furthermore, the cooperation with gerontology specialists throughout the process also indicates expert knowledge as integrated into the model.

Jezik:Angleški jezik
Ključne besede:explainable artificial inteligence, healthy aging scale, XGBoost clasifier, machine learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:19 str.
Številčenje:Vol. 24 , art. 317
PID:20.500.12556/RUL-168021 Povezava se odpre v novem oknu
UDK:004.85
ISSN pri članku:1472-6947
DOI:10.1186/s12911-024-02714-w Povezava se odpre v novem oknu
COBISS.SI-ID:215209987 Povezava se odpre v novem oknu
Datum objave v RUL:25.03.2025
Število ogledov:346
Število prenosov:477
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:BMC medical informatics and decision making
Skrajšan naslov:BMC Med Inform Decis Mak
Založnik:BioMed Central
ISSN:1472-6947
COBISS.SI-ID:2440980 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:pojasnjevalna umetna inteligenca, skala zdravega staranja, razvrščevalnik XGBoost, strojno učenje

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0246
Naslov:ICT4QoL - Informacijsko komunikacijske tehnologije za kakovostno življenje

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj