Podrobno

Degrade or super-resolve to recognize? Bridging the domain gap for cross-resolution face recognition
ID Grm, Klemen (Avtor), ID Özata, Berk Kemal (Avtor), ID Kantarcı, Alperen (Avtor), ID Štruc, Vitomir (Avtor), ID Ekenel, Hazim Kemal (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,54 MB)
MD5: E2E3AE21B9B34C3114A1BE8F30D91AC2
URLURL - Izvorni URL, za dostop obiščite https://ieeexplore.ieee.org/document/10833634 Povezava se odpre v novem oknu

Izvleček
In this work, we address the problem of cross-resolution face recognition, where a low-resolution probe face is compared against high-resolution gallery faces. To address this challenging problem, we investigate two approaches for bridging the quality gap between low-quality probe faces and high-quality gallery faces. The first approach focuses on degrading the quality of high-resolution gallery images to bring them closer to the quality of the probe images. The second approach involves enhancing the resolution of the probe images using face hallucination. Our experiments on the SCFace and DroneSURF datasets reveal that the success of face hallucination is highly dependent on the quality of the original images, since poor image quality can severely limit the effectiveness of the hallucination technique. Therefore, the selection of the appropriate face recognition method should consider the quality of the images. Additionally, our experiments also suggest that combining gallery degradation and face hallucination in a hybrid recognition scheme provides the best overall results for cross-resolution face recognition with relatively high-quality probe images, while the degradation process on its own is the more suitable option for low-quality probe images. Our results show that the combination of standard computer vision approaches such as degradation, super-resolution, feature fusion, and score fusion can be used to substantially improve performance on the task of low resolution face recognition using off-the-shelf face recognition models without re-training on the target domain.

Jezik:Angleški jezik
Ključne besede:biometrics, image processing, machine Learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:Str. 10542-10558
Številčenje:Vol. 13
PID:20.500.12556/RUL-167925 Povezava se odpre v novem oknu
UDK:004.93:57.087.1
ISSN pri članku:2169-3536
DOI:10.1109/ACCESS.2025.3527236 Povezava se odpre v novem oknu
COBISS.SI-ID:229666051 Povezava se odpre v novem oknu
Datum objave v RUL:20.03.2025
Število ogledov:344
Število prenosov:99
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:IEEE access
Založnik:Institute of Electrical and Electronics Engineers
ISSN:2169-3536
COBISS.SI-ID:519839513 Povezava se odpre v novem oknu

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:biometrija, procesiranje slik, strojno učenje

Projekti

Financer:SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TÜRKIYE (TUBITAK)
Številka projekta:120N011
Naslov:Low Resolution Face Recognition (FaceLQ)

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0250
Naslov:Metrologija in biometrični sistemi

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj