Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Generative adversarial network-based inverse design of self-deploying soft kirigami composites for targeted shape transformation
ID
Brzin, Tomaž
(
Avtor
),
ID
Jawed, Mohammad Khalid
(
Avtor
),
ID
Brojan, Miha
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(7,95 MB)
MD5: B957E8B2CFE820306158266D9A611B61
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0952197625004178
Galerija slik
Izvleček
The design and development of morphing structures that transition from compact, transportable forms to stable, deployable configurations is crucial for advances in soft robotics, healthcare applications, and biomimetic systems. These structures often require customized functionalities and must self-deploy into precise target shapes. Therefore, the deformed shapes of such structures are usually prescribed and the parameters for their design are unknown. To obtain the fabrication parameters, the inverse problem needs to be solved, which quickly becomes quite challenging using conventional methods due to the high-dimensional nature of the inverse problem as well as the material and geometric nonlinearities. To overcome these challenges, we combine the best of the two worlds – physics and data – and present a data-driven approach for the inverse design of two-layered soft composites that utilize the principles of kirigami and strain mismatch to self- deploy into different three-dimensional shapes. At the center of our methodology is the generative adversarial network, designed to generate the necessary fabrication parameters. By using a pre-trained simulator network, we condition the generative model to generate feasible and accurate fabrication parameters that are used to make composites that deploy into the target shapes. Our findings demonstrate that the generative model is able to effectively predict kirigami patterns and pre-stretch values required to realize complex three-dimensional shapes from simple and diverse planar designs. By performing simulations and precise desktop experiments, we compare the target with deployed shapes and demonstrate the predictive capacity of the method.
Jezik:
Angleški jezik
Ključne besede:
generative adversarial network
,
inverse design
,
self-deploying structures
,
kirigami composites
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
14 str.
Številčenje:
Vol. 149, art. 110417
PID:
20.500.12556/RUL-167770
UDK:
621:004.8
ISSN pri članku:
1873-6769
DOI:
10.1016/j.engappai.2025.110417
COBISS.SI-ID:
228557315
Datum objave v RUL:
11.03.2025
Število ogledov:
469
Število prenosov:
110
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Engineering applications of artificial intelligence
Založnik:
Elsevier, International Federation of Automatic Control
ISSN:
1873-6769
COBISS.SI-ID:
23000325
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
J2-2499
Naslov:
Razvoj kvaziperiodičnih deformacijskih vzorcev v viskoelastičnih strukturah
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
J2-4449
Naslov:
Preobrazni mehki kirigami kompozitni sistem za snovanje gibkih zložljivih struktur in mehkih robotov
Financer:
EC - European Commission
Program financ.:
NextGenerationEU
Akronim:
GREENTECH
Financer:
NSF - National Science Foundation
Program financ.:
Directorate for Engineering
Številka projekta:
2053971
Naslov:
CDS&E: Deep Spring: a Neural Network-based Approach to Design of Slender Structures
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj