Podrobno

Generative adversarial network-based inverse design of self-deploying soft kirigami composites for targeted shape transformation
ID Brzin, Tomaž (Avtor), ID Jawed, Mohammad Khalid (Avtor), ID Brojan, Miha (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (7,95 MB)
MD5: B957E8B2CFE820306158266D9A611B61
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0952197625004178 Povezava se odpre v novem oknu

Izvleček
The design and development of morphing structures that transition from compact, transportable forms to stable, deployable configurations is crucial for advances in soft robotics, healthcare applications, and biomimetic systems. These structures often require customized functionalities and must self-deploy into precise target shapes. Therefore, the deformed shapes of such structures are usually prescribed and the parameters for their design are unknown. To obtain the fabrication parameters, the inverse problem needs to be solved, which quickly becomes quite challenging using conventional methods due to the high-dimensional nature of the inverse problem as well as the material and geometric nonlinearities. To overcome these challenges, we combine the best of the two worlds – physics and data – and present a data-driven approach for the inverse design of two-layered soft composites that utilize the principles of kirigami and strain mismatch to self- deploy into different three-dimensional shapes. At the center of our methodology is the generative adversarial network, designed to generate the necessary fabrication parameters. By using a pre-trained simulator network, we condition the generative model to generate feasible and accurate fabrication parameters that are used to make composites that deploy into the target shapes. Our findings demonstrate that the generative model is able to effectively predict kirigami patterns and pre-stretch values required to realize complex three-dimensional shapes from simple and diverse planar designs. By performing simulations and precise desktop experiments, we compare the target with deployed shapes and demonstrate the predictive capacity of the method.

Jezik:Angleški jezik
Ključne besede:generative adversarial network, inverse design, self-deploying structures, kirigami composites
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:14 str.
Številčenje:Vol. 149, art. 110417
PID:20.500.12556/RUL-167770 Povezava se odpre v novem oknu
UDK:621:004.8
ISSN pri članku:1873-6769
DOI:10.1016/j.engappai.2025.110417 Povezava se odpre v novem oknu
COBISS.SI-ID:228557315 Povezava se odpre v novem oknu
Datum objave v RUL:11.03.2025
Število ogledov:469
Število prenosov:110
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Engineering applications of artificial intelligence
Založnik:Elsevier, International Federation of Automatic Control
ISSN:1873-6769
COBISS.SI-ID:23000325 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-2499
Naslov:Razvoj kvaziperiodičnih deformacijskih vzorcev v viskoelastičnih strukturah

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-4449
Naslov:Preobrazni mehki kirigami kompozitni sistem za snovanje gibkih zložljivih struktur in mehkih robotov

Financer:EC - European Commission
Program financ.:NextGenerationEU
Akronim:GREENTECH

Financer:NSF - National Science Foundation
Program financ.:Directorate for Engineering
Številka projekta:2053971
Naslov:CDS&E: Deep Spring: a Neural Network-based Approach to Design of Slender Structures

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj