Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Microstructural characterization of QC-forming Al-Mn-based alloy using machine learning software
ID
Zaky, Adam
(
Avtor
),
ID
Leskovar, Blaž
(
Avtor
),
ID
Naglič, Iztok
(
Avtor
),
ID
Markoli, Boštjan
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,03 MB)
MD5: 252EFE8071996595CDD2D9ED3B687785
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s11837-024-06899-3
Galerija slik
Izvleček
The main objective was to investigate and evaluate the influence of TiC and TiB$_2$ inoculants on the formation of not only the icosahedral quasicrystalline phase (IQC) but also the β-phase in our Al-Mn-Si-Cu-Mg alloy. First, the presence of both phases was confirmed using electron backscatter diffraction (EBSD), followed by microstructural segmentation and quantification using the open-source machine learning software ilastik and Fiji. The ilastik software was selected because it allowed us to use different parameters to distinguish between the IQC and β-AlMnSi phases, which otherwise have similar color/Z contrast and are difficult to distinguish in a timely manner using other methods. The analyses were performed on a total of 3662 images taken during optical light microscopy. The results show that TiC inoculants better promote the ability to form IQC compared to TiB$_2$. The use of TiC resulted in an increase of 40% compared to only 14% when TiB$_2$ was used. Exceeding the TiC threshold of 0.0224 wt.% resulted in a 571% increase in the amount of β-phase compared to our non-inoculated alloy. Microhardness measurements were carried out on the IQC phase using the Vickers method, and an average value of 680 HV0.01 was obtained.
Jezik:
Angleški jezik
Ključne besede:
aluminum alloys
,
quasicrystals
,
nucleation
,
machine learning
,
characterization
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
NTF - Naravoslovnotehniška fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
Str. 1123-1132
Številčenje:
Vol. 77, no. 3
PID:
20.500.12556/RUL-167743
UDK:
669
ISSN pri članku:
1543-1851
DOI:
10.1007/s11837-024-06899-3
COBISS.SI-ID:
211389187
Datum objave v RUL:
10.03.2025
Število ogledov:
433
Število prenosov:
106
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
JOM
Skrajšan naslov:
JOM
Založnik:
Springer Nature, The Minerals, Metals & Materials Society
ISSN:
1543-1851
COBISS.SI-ID:
513684249
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
aluminijeve zlitine
,
kvazikristali
,
nukleacija
,
strojno učenje
,
karakterizacija
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Program financ.:
Young researchers
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
EIT RawMaterials
Številka projekta:
21128
Akronim:
CastQC
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj