Podrobno

Microstructural characterization of QC-forming Al-Mn-based alloy using machine learning software
ID Zaky, Adam (Avtor), ID Leskovar, Blaž (Avtor), ID Naglič, Iztok (Avtor), ID Markoli, Boštjan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,03 MB)
MD5: 252EFE8071996595CDD2D9ED3B687785
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s11837-024-06899-3 Povezava se odpre v novem oknu

Izvleček
The main objective was to investigate and evaluate the influence of TiC and TiB$_2$ inoculants on the formation of not only the icosahedral quasicrystalline phase (IQC) but also the β-phase in our Al-Mn-Si-Cu-Mg alloy. First, the presence of both phases was confirmed using electron backscatter diffraction (EBSD), followed by microstructural segmentation and quantification using the open-source machine learning software ilastik and Fiji. The ilastik software was selected because it allowed us to use different parameters to distinguish between the IQC and β-AlMnSi phases, which otherwise have similar color/Z contrast and are difficult to distinguish in a timely manner using other methods. The analyses were performed on a total of 3662 images taken during optical light microscopy. The results show that TiC inoculants better promote the ability to form IQC compared to TiB$_2$. The use of TiC resulted in an increase of 40% compared to only 14% when TiB$_2$ was used. Exceeding the TiC threshold of 0.0224 wt.% resulted in a 571% increase in the amount of β-phase compared to our non-inoculated alloy. Microhardness measurements were carried out on the IQC phase using the Vickers method, and an average value of 680 HV0.01 was obtained.

Jezik:Angleški jezik
Ključne besede:aluminum alloys, quasicrystals, nucleation, machine learning, characterization
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:NTF - Naravoslovnotehniška fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:Str. 1123-1132
Številčenje:Vol. 77, no. 3
PID:20.500.12556/RUL-167743 Povezava se odpre v novem oknu
UDK:669
ISSN pri članku:1543-1851
DOI:10.1007/s11837-024-06899-3 Povezava se odpre v novem oknu
COBISS.SI-ID:211389187 Povezava se odpre v novem oknu
Datum objave v RUL:10.03.2025
Število ogledov:433
Število prenosov:106
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:JOM
Skrajšan naslov:JOM
Založnik:Springer Nature, The Minerals, Metals & Materials Society
ISSN:1543-1851
COBISS.SI-ID:513684249 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:aluminijeve zlitine, kvazikristali, nukleacija, strojno učenje, karakterizacija

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Program financ.:Young researchers

Financer:Drugi - Drug financer ali več financerjev
Program financ.:EIT RawMaterials
Številka projekta:21128
Akronim:CastQC

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj