Podrobno

AI-enabled manufacturing process discovery
ID Quispe, Daniel (Avtor), ID Kozjek, Dominik (Avtor), ID Mozaffar, Mojtaba (Avtor), ID Xue, Tianju (Avtor), ID Cao, Jian (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,09 MB)
MD5: D48054DA619E325FB4C9106A11937196
URLURL - Izvorni URL, za dostop obiščite https://academic.oup.com/pnasnexus/article/4/2/pgaf054/8026683 Povezava se odpre v novem oknu

Izvleček
Discovering manufacturing processes has been largely experienced-based. We propose a shift to a systematic approach driven by dependencies between energy inputs and performance outputs. Uncovering these dependencies across diverse process classes requires a universal language that characterizes process inputs and performances. Traditional manufacturing languages, with their individualized syntax and terminology, hinder the characterization across varying length scales and energy inputs. To enable the evaluation of process dependencies, we propose a broad manufacturing language that facilitates the characterization of diverse process classes, which include energy inputs, tool-material interactions, material compatibility, and performance outputs. We analyze the relationships between these characteristics by constructing a dataset of over 50 process classes, which we use to train a variational autoencoder (VAE) model. This generative model encodes our dataset into a 2D latent space, where we can explore, select, and generate processes based on desired performances and retrieve the corresponding process characteristics. After verifying the dependencies derived from the VAE model match with existing knowledge on manufacturing processes, we demonstrate the usefulness of using the model to discover new potential manufacturing processes through three illustrative cases.

Jezik:Angleški jezik
Ključne besede:deep learning, manufacturing, data-driven modeling, variational autoencoder
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.02.2025
Leto izida:2025
Št. strani:13 str.
Številčenje:Vol. 4, no. 2
PID:20.500.12556/RUL-167737 Povezava se odpre v novem oknu
UDK:621
ISSN pri članku:2752-6542
DOI:10.1093/pnasnexus/pgaf054 Povezava se odpre v novem oknu
COBISS.SI-ID:228422915 Povezava se odpre v novem oknu
Datum objave v RUL:10.03.2025
Število ogledov:1312
Število prenosov:105
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:PNAS nexus
Založnik:Oxford University Press
ISSN:2752-6542
COBISS.SI-ID:115680259 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC 4.0, Creative Commons Priznanje avtorstva-Nekomercialno 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc/4.0/deed.sl
Opis:Licenca Creative Commons, ki prepoveduje komercialno uporabo, vendar uporabniki ne rabijo upravljati materialnih avtorskih pravic na izpeljanih delih z enako licenco.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:globoko učenje, proizvodni procesi, podatkovno vodeno modeliranje, variacijski avtoenkoder

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:USA, Department of Defense
Številka projekta:N00014-19-1-2642
Naslov:Vannevar Bush Faculty Fellowship

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj