Podrobno

Zero crossing signature : a time-domain method applied to diesel and gasoline vehicle classification
ID Murovec, Jure (Avtor), ID Prezelj, Jurij (Avtor), ID Ćirić, Dejan (Avtor), ID Milivojčević, Marko (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (18,27 MB)
MD5: 158B85361226FFEFEA099AE1061FCAED
URLURL - Izvorni URL, za dostop obiščite https://ieeexplore.ieee.org/document/10810281 Povezava se odpre v novem oknu

Izvleček
The Zero Crossing Signature (ZCS) approach is a novel time-domain feature extraction method that analyzes zero crossing points over multiple amplitude-shifted versions of an acoustic signal, enabling richer information extraction while maintaining computational efficiency. This method is especially suitable for real-time classification in the emerging Internet of Things (IOT) landscape, where resource-constrained devices require low-power solutions to support emission reduction efforts. In this study, the ZCS method was employed to showcase its full potential by classifying vehicles as diesel or gasoline based on their acoustic signatures. This classification task, applied to a database of car sounds acquired in the authors’ previous research, serves as a comprehensive demonstration of the method’s capabilities in distinguishing between engine types through characteristic sound wave patterns, highlighting its effectiveness and applicability in real-world scenarios. To further enhance feature extraction while keeping computational costs low, simple transformations using the first and second derivatives of the acoustic signals were applied, offering an efficient means of capturing additional signal characteristics. A dataset of 417 vehicle recordings was analyzed, and the classification performance of ZCS was compared with the conventional Zero Crossing (ZC) method using a Self-Organizing Map (SOM) configured with a 1D grid of 9 neurons. The study evaluated various time constants and crossing threshold densities for ZCS, benchmarking them against the classical ZC approach to assess their effectiveness.

Jezik:Angleški jezik
Ključne besede:zero crossing, time domain, vehicle classification, feature extraction, unsupervised learning, acoustic signal analysis
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:Str. 5128-5138
Številčenje:Vol. 25, iss. 3
PID:20.500.12556/RUL-167088 Povezava se odpre v novem oknu
UDK:004:534
ISSN pri članku:1558-1748
DOI:10.1109/JSEN.2024.3516876 Povezava se odpre v novem oknu
COBISS.SI-ID:221243907 Povezava se odpre v novem oknu
Avtorske pravice:
Podatek o licenci CC BY-NC-ND 4.0 je naveden na pristajalni strani članka. (Datum opombe: 7. 2. 2025)
Datum objave v RUL:07.02.2025
Število ogledov:536
Število prenosov:121
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:IEEE sensors journal
Skrajšan naslov:IEEE sens. j.
Založnik:IEEE Sensors Council
ISSN:1558-1748
COBISS.SI-ID:1542314 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj