Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
DELWAVE 1.0 : deep learning surrogate model of surface wave climate in the Adriatic Basin
ID
Mlakar, Peter
(
Avtor
),
ID
Ricchi, Antonio
(
Avtor
),
ID
Carniel, Sandro
(
Avtor
),
ID
Bonaldo, Davide
(
Avtor
),
ID
Ličer, Matjaž
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(8,97 MB)
MD5: 6444E5BA289F05EC9325430C239BB9C6
URL - Izvorni URL, za dostop obiščite
https://gmd.copernicus.org/articles/17/4705/2024/
Galerija slik
Izvleček
We propose a new point-prediction model, the DEep Learning WAVe Emulating model (DELWAVE), which successfully emulates the behaviour of a numerical surface ocean wave model (Simulating WAves Nearshore, SWAN) at a sparse set of locations, thus enabling numerically cheap large-ensemble prediction over synoptic to climate timescales. DELWAVE was trained on COSMO-CLM (Climate Limited-area Model) and SWAN input data during the period of 1971–1998, tested during 1998–2000, and cross-evaluated over the far-future climate time window of 2071–2100. It is constructed from a convolutional atmospheric encoder block, followed by a temporal collapse block and, finally, a regression block. DELWAVE reproduces SWAN model significant wave heights with a mean absolute error (MAE) of between 5 and 10 cm, mean wave directions with a MAE of 10–25°, and a mean wave period with a MAE of 0.2 s. DELWAVE is able to accurately emulate multi-modal mean wave direction distributions related to dominant wind regimes in the basin. We use wave power analysis from linearised wave theory to explain prediction errors in the long-period limit during southeasterly conditions. We present a storm analysis of DELWAVE, employing threshold-based metrics of precision and recall to show that DELWAVE reaches a very high score (both metrics over 95 %) of storm detection. SWAN and DELWAVE time series are compared to each other in the end-of-century scenario (2071–2100) and compared to the control conditions in the 1971–2000 period. Good agreement between DELWAVE and SWAN is found when considering climatological statistics, with a small (≤ 5 %), though systematic, underestimate of 99th-percentile values. Compared to control climatology over all wind directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions, suggesting that the noise introduced by surrogate modelling is substantially weaker than the climate change signal.
Jezik:
Angleški jezik
Ključne besede:
surrogate modelling
,
deep learning
,
DEep Learning WAVe Emulating model
,
DELWAVE
,
Simulating WAves Nearshore
,
SWAN
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 4705-4725
Številčenje:
Vol. 17, iss. 12
PID:
20.500.12556/RUL-166688
UDK:
004.9
ISSN pri članku:
1991-959X
DOI:
10.5194/gmd-17-4705-2024
COBISS.SI-ID:
203614211
Datum objave v RUL:
21.01.2025
Število ogledov:
34
Število prenosov:
23
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Geoscientific model development
Skrajšan naslov:
Geosci. model dev.
Založnik:
Copernicus Publications, European Geosciences Union
ISSN:
1991-959X
COBISS.SI-ID:
517533209
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
modeliranje podatkov
,
računalništvo
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
PON Ricerca e Innovazione
Številka projekta:
DM 1062
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P1-0237
Naslov:
Raziskave obalnega morja
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj