Podrobno

Unsupervised discovery of 3D structural elements for scanned indoor scenes
ID Antić, Miloš (Avtor), ID Zdešar, Andrej (Avtor), ID Iglesias Martínez, José Antonio (Avtor), ID Sanchis, Araceli (Avtor), ID Škrjanc, Igor (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (9,45 MB)
MD5: 1390829DB5CE918DA9A71AD3D8409AB4
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1568494624014546 Povezava se odpre v novem oknu

Izvleček
This paper addresses the growing demand for effective 3D sensing applications by presenting a comprehensive point cloud segmentation method developed for large indoor spaces. Our approach recognises the challenges associated with (un)ordered data and presents a robust algorithm capable of dealing with irregularities caused by measurement inaccuracies, e.g. occlusion, noise, outliers and discontinuous data transitions. The method uses a multi-step filtering approach that sequentially navigates through Gaussian map, distance space and regular grid representations. Connected component analysis, structural rules and assumptions guide the unsupervised clustering of structural elements (SEs), e.g. walls, ceilings and floors. The method is adaptable to various datasets, including joint 2D-3D datasets such as true RGB-D data. A colour metric is introduced to account for illumination effects during scanning and to ensure the generalisability of the method. The importance of detecting SEs lies in their role as input to deep neural networks, which improve the accuracy of SLAM algorithms and influence the quality of subsequent indoor residual object detection. This paper introduces density-based clustering of objects using colour similarity measures and low-level features to further refine the segmentation by eliminating outliers and improving the detection of sharp shapes. The proposed method represents a sophisticated and versatile solution that overcomes scene complexity and makes an important contribution to applications in scene understanding, SLAM and indoor object recognition.

Jezik:Angleški jezik
Ključne besede:point cloud, unsupervised search, statistical clustering, harmonic interpolation, structural elements, objects
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:19 str.
Številčenje:Vol. 170, art. 112680
PID:20.500.12556/RUL-166687 Povezava se odpre v novem oknu
UDK:681.5:004
ISSN pri članku:1568-4946
DOI:10.1016/j.asoc.2024.112680 Povezava se odpre v novem oknu
COBISS.SI-ID:223324163 Povezava se odpre v novem oknu
Datum objave v RUL:21.01.2025
Število ogledov:25
Število prenosov:18
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied soft computing
Založnik:Elsevier
ISSN:1568-4946
COBISS.SI-ID:16080679 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:oblak točk, nenadzorovano iskanje, statistično rojenje, harmonična interpolacija, strukturni elementi, objekti

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P2-0219
Naslov:Modeliranje, simulacija in vodenje procesov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj