Podrobno

DiffuseRT: predicting likely anatomical deformations of patients undergoing radiotherapy
ID Smolders, A. (Avtor), ID Rivetti, Luciano (Avtor), ID Vatterodt, N. (Avtor), ID Korreman, S. S. (Avtor), ID Lomax, A. (Avtor), ID Sharma, Manju (Avtor), ID Studen, Andrej (Avtor), ID Weber, D. C. (Avtor), ID Jeraj, Robert (Avtor), ID Albertini, F. (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (12,17 MB)
MD5: CB9AC5EDABC487F1FEDC0978A5CA51DA
URLURL - Izvorni URL, za dostop obiščite https://iopscience.iop.org/article/10.1088/1361-6560/ad61b7 Povezava se odpre v novem oknu

Izvleček
Objective. Predicting potential deformations of patients can improve radiotherapy treatment planning. Here, we introduce new deep-learning models that predict likely anatomical changes during radiotherapy for head and neck cancer patients. Approach. Denoising diffusion probabilistic models (DDPMs) were developed to generate fraction-specific anatomical changes based on a reference cone-beam CT (CBCT), the fraction number and the dose distribution delivered. Three distinct DDPMs were developed: (1) the image model was trained to directly generate likely future CBCTs, (2) the deformable vector field (DVF) model was trained to generate DVFs that deform a reference CBCT and (3) the hybrid model was trained similarly to the DVF model, but without relying on an external deformable registration algorithm. The models were trained on 9 patients with longitudinal CBCT images (224 CBCTs) and evaluated on 5 patients (152 CBCTs). Results. The generated images mainly exhibited random positioning shifts and small anatomical changes for early fractions. For later fractions, all models predicted weight losses in accordance with the training data. The distributions of volume and position changes of the body, esophagus, and parotids generated with the image and hybrid models were more similar to the ground truth distribution than the DVF model, evident from the lower Wasserstein distance achieved with the image (0.33) and hybrid model (0.30) compared to the DVF model (0.36). Generating several images for the same fraction did not yield the expected variability since the ground truth anatomical changes were only in 76% of the fractions within the 95% bounds predicted with the best model. Using the generated images for robust optimization of simplified proton therapy plans improved the worst-case clinical target volume V95 with 7% compared to optimizing with 3 mm set-up robustness while maintaining a similar integral dose. Significance. The newly developed DDPMsgenerate distributions similar to the real anatomical changes and have the potential to be used for robust anatomical optimization.

Jezik:Angleški jezik
Ključne besede:medical imaging, radiotherapy, deep learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:16 str.
Številčenje:Vol. 69, no. 15, art. no. 155016
PID:20.500.12556/RUL-166523 Povezava se odpre v novem oknu
UDK:615.84
ISSN pri članku:0031-9155
DOI:10.1088/1361-6560/ad61b7 Povezava se odpre v novem oknu
COBISS.SI-ID:222722307 Povezava se odpre v novem oknu
Datum objave v RUL:16.01.2025
Število ogledov:456
Število prenosov:130
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Physics in Medicine & Biology
Skrajšan naslov:Phys. Med. Biol.
Založnik:American Institute of Physics
ISSN:0031-9155
COBISS.SI-ID:26128896 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:medicinsko slikanje, radioterapija, globoko učenje

Projekti

Financer:EC - European Commission
Številka projekta:955956
Naslov:Real-time Adaptive Particle Therapy of Cancer
Akronim:RAPTOR

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj