Podrobno

Improving stochastic models by smart denoising and latent representation optimization
ID Jelenčič, Jakob (Avtor), ID Massri, M. Besher (Avtor), ID Todorovski, Ljupčo (Avtor), ID Grobelnik, Marko (Avtor), ID Mladenić, Dunja (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,21 MB)
MD5: C540ED17ED4B9495F0332B9B845CD281
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S002002552401586X Povezava se odpre v novem oknu

Izvleček
This paper introduces an innovative deep learning-based optimization method specifically designed for data derived from stochastic processes. Addressing the prevalent issue of rapid overfitting in real-world scenarios with limited historical data, our approach focuses on denoising optimization. The method effectively balances the simultaneous optimization of latent data representation and target variables, leading to enhanced model performance. We rigorously test our approach using five diverse real-world datasets. Our study is structured into three parts: an ablation study to validate the individual components of our method, a statistical analysis using the Wilcoxon rank-sum test to confirm the superiority of our method against five research hypotheses, and a detailed exploration of parameter visualization and fine-tuning. The comprehensive evaluation demonstrates that our method not only outperforms existing techniques but also significantly contributes to the advancement of deep learning models for stochastic processes. The findings underscore the potential of our method as a robust solution to the challenges in modeling stochastic processes with deep learning, offering new avenues for efficient and accurate predictions.

Jezik:Angleški jezik
Ključne besede:deep learning optimization, stochastic processes
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:15 str.
Številčenje:Vol. 692, art. 121672
PID:20.500.12556/RUL-165331 Povezava se odpre v novem oknu
UDK:004.8
ISSN pri članku:0020-0255
DOI:10.1016/j.ins.2024.121672 Povezava se odpre v novem oknu
COBISS.SI-ID:216522499 Povezava se odpre v novem oknu
Datum objave v RUL:02.12.2024
Število ogledov:430
Število prenosov:122
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Information sciences
Skrajšan naslov:Inf. sci.
Založnik:Elsevier
ISSN:0020-0255
COBISS.SI-ID:25613056 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:umetna inteligenca, globoko učenje, stohastične metode

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj