Podrobno

Sufficient matrices : properties, generating and testing
ID Nagy, Marianna E.- (Avtor), ID Illés, Tibor (Avtor), ID Povh, Janez (Avtor), ID Varga, Anita (Avtor), ID Žerovnik, Janez (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (773,19 KB)
MD5: 0F136E28054DC73DE32C92D0BA14E5C9
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s10957-023-02280-7 Povezava se odpre v novem oknu

Izvleček
This paper investigates various aspects of sufficient matrices, one of the most relevant matrix classes introduced in connection with linear complementarity problems. We summarize the most important theoretical results and properties related to sufficient matrices. Based on these, we propose different construction rules that can be used to generate new matrices that belong to this class. A nonnegative number can be assigned to each sufficient matrix, which is called its handicap and works as a measure of sufficiency. The handicap plays a crucial role in proving convergence and complexity results for interior point algorithms for linear complementarity problems. For a particular sufficient matrix, called Csizmadia’s matrix, we give the exact value of the handicap, which is exponential in the size of the matrix. Another important topic that we address is deciding whether a matrix is sufficient. Tseng proved in 2000 that this decision problem is co-NP hard. We investigate three different algorithms for determining the sufficiency of a given matrix: Väliaho’s algorithm, a linear programming-based algorithm, and an algorithm that facilitates nonlinear programming reformulations of the definition of sufficiency. We tested the efficiency of these methods on our recently launched benchmark data set that consists of four different sets of matrices. In this paper, we give the description and most important properties of the benchmark set, which can be used in the future to compare the performance of different interior point algorithms for linear complementarity problems.

Jezik:Angleški jezik
Ključne besede:linear algebra, optimization theory, sufficient matrices, P∗(κ)-matrices, linear complementarity problem
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:Str. 204-236
Številčenje:Vol. 202
PID:20.500.12556/RUL-165205 Povezava se odpre v novem oknu
UDK:512.643
ISSN pri članku:0022-3239
DOI:10.1007/s10957-023-02280-7 Povezava se odpre v novem oknu
COBISS.SI-ID:183125251 Povezava se odpre v novem oknu
Datum objave v RUL:27.11.2024
Število ogledov:387
Število prenosov:52
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Journal of optimization theory and applications
Skrajšan naslov:J. optim. theory appl.
Založnik:Plenum Pub. Corp.
ISSN:0022-3239
COBISS.SI-ID:25773824 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:linearna algebra, teorija optimizacije, zadostne matrike, P∗(κ)-matrike, problem linearne komplementarnosti

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Corvinus University of Budapest

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj