Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Hybrid music recommendation with graph neural networks
ID
Bevec, Matej
(
Avtor
),
ID
Tkalčič, Marko
(
Avtor
),
ID
Pesek, Matevž
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,42 MB)
MD5: 15802CC631EC5B7312C4FC19A8653AFF
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s11257-024-09410-4
Galerija slik
Izvleček
Modern music streaming services rely on recommender systems to help users navigate within their large collections. Collaborative filtering (CF) methods, that leverage past user–item interactions, have been most successful, but have various limitations, like performing poorly among sparsely connected items. Conversely, content-based models circumvent the data-sparsity issue by recommending based on item content alone, but have seen limited success. Recently, graph-based machine learning approaches have shown, in other domains, to be able to address the aforementioned issues. Graph neural networks (GNN) in particular promise to learn from both the complex relationships within a user interaction graph, as well as content to generate hybrid recommendations. Here, we propose a music recommender system using a state-of-the-art GNN, PinSage, and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and content-based methods on a related song prediction task, venturing beyond accuracy in our evaluation. Our experiments show that (i) our approach is among the top performers and stands out as the most well rounded compared to baselines, (ii) graph-based CF methods outperform matrix-based CF approaches, suggesting that user interaction data may be better represented as a graph and (iii) in our evaluation, CF methods do not exhibit a performance drop in the long tail, where the hybrid approach does not offer an advantage.
Jezik:
Angleški jezik
Ključne besede:
embeddings
,
music recommendation systems
,
graph neural networks
,
beyond-accuracy evaluation
,
PinSage
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 1891–1928
Številčenje:
Vol. 34, iss. 5
PID:
20.500.12556/RUL-165162
UDK:
004.032.26:78
ISSN pri članku:
0924-1868
DOI:
10.1007/s11257-024-09410-4
COBISS.SI-ID:
206444035
Datum objave v RUL:
25.11.2024
Število ogledov:
36
Število prenosov:
3
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
User modeling and user-adapted interaction
Skrajšan naslov:
User model. user-adapt. interact.
Založnik:
Springer Nature
ISSN:
0924-1868
COBISS.SI-ID:
15633925
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
vdelave
,
glasbeni priporočilni sistemi
,
nevronske mreže na grafih
,
vrednotenje nad natančnostjo
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj