izpis_h1_title_alt

Hybrid music recommendation with graph neural networks
ID Bevec, Matej (Avtor), ID Tkalčič, Marko (Avtor), ID Pesek, Matevž (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,42 MB)
MD5: 15802CC631EC5B7312C4FC19A8653AFF
URLURL - Izvorni URL, za dostop obiščite https://link.springer.com/article/10.1007/s11257-024-09410-4 Povezava se odpre v novem oknu

Izvleček
Modern music streaming services rely on recommender systems to help users navigate within their large collections. Collaborative filtering (CF) methods, that leverage past user–item interactions, have been most successful, but have various limitations, like performing poorly among sparsely connected items. Conversely, content-based models circumvent the data-sparsity issue by recommending based on item content alone, but have seen limited success. Recently, graph-based machine learning approaches have shown, in other domains, to be able to address the aforementioned issues. Graph neural networks (GNN) in particular promise to learn from both the complex relationships within a user interaction graph, as well as content to generate hybrid recommendations. Here, we propose a music recommender system using a state-of-the-art GNN, PinSage, and evaluate it on a novel Spotify dataset against traditional CF, graph-based CF and content-based methods on a related song prediction task, venturing beyond accuracy in our evaluation. Our experiments show that (i) our approach is among the top performers and stands out as the most well rounded compared to baselines, (ii) graph-based CF methods outperform matrix-based CF approaches, suggesting that user interaction data may be better represented as a graph and (iii) in our evaluation, CF methods do not exhibit a performance drop in the long tail, where the hybrid approach does not offer an advantage.

Jezik:Angleški jezik
Ključne besede:embeddings, music recommendation systems, graph neural networks, beyond-accuracy evaluation, PinSage
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:Str. 1891–1928
Številčenje:Vol. 34, iss. 5
PID:20.500.12556/RUL-165162 Povezava se odpre v novem oknu
UDK:004.032.26:78
ISSN pri članku:0924-1868
DOI:10.1007/s11257-024-09410-4 Povezava se odpre v novem oknu
COBISS.SI-ID:206444035 Povezava se odpre v novem oknu
Datum objave v RUL:25.11.2024
Število ogledov:36
Število prenosov:3
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:User modeling and user-adapted interaction
Skrajšan naslov:User model. user-adapt. interact.
Založnik:Springer Nature
ISSN:0924-1868
COBISS.SI-ID:15633925 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:vdelave, glasbeni priporočilni sistemi, nevronske mreže na grafih, vrednotenje nad natančnostjo

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj