izpis_h1_title_alt

Združevanje podatkov globinske in črno bele kamere za doseganje hiperločljivosti
ID Zupan, Urh (Avtor), ID Vrabič, Rok (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (4,46 MB)
MD5: A77A9A43D97F7E7AB0A512420347E00D

Izvleček
Zaključno delo obravnava gradnjo in proces učenja konvolucijske nevronske mreže, z namenom združevanja podatkov iz črno-bele kamere ter globinske kamere z nizko ločljivostjo. Cilj naloge je na podlagi teh podatkov izdelati globinsko mapo notranjih prizorov z visoko ločljivostjo. Kot primarno arhitekturo konvolucijske nevronske mreže smo uporabili posodobljeno različico arhitekture UNet, ki lahko po posodobitvi sprejme dva vhoda. Z naučenim modelom hočemo dosegati dovolj visoko natančnost izhodne globinske mape ob hitrem računskem času, zato smo morali testirati več arhitektur, katerim smo spreminjali število slojev.

Jezik:Slovenski jezik
Ključne besede:strojno učenje, nevronske mreže, konvolucija, podatki, hiperločljivost, UNet arhitektura.
Vrsta gradiva:Magistrsko delo/naloga
Organizacija:FS - Fakulteta za strojništvo
Leto izida:2024
PID:20.500.12556/RUL-165141 Povezava se odpre v novem oknu
Datum objave v RUL:24.11.2024
Število ogledov:30
Število prenosov:5
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Combining data from depth and black-and-white cameras to achieve hyperresolution
Izvleček:
The thesis discusses the construction and training process of a convolutional neural network aimed at merging data from a black-and-white camera and a low-resolution depth camera. The goal is to create a high-resolution depth map of indoor scenes based on this data. The primary architecture used is an updated version of the UNet architecture, which can accept two inputs after modification. To achieve sufficiently high accuracy of the output depth map while maintaining fast computational time, we tested several architectures while modifying the number of layers.

Ključne besede:machine learning, neural networks, convolution, data, hyperresolution, UNet architecture.

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj