Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Predictive modeling of turning operations under different cooling/lubricating conditions for sustainable manufacturing with machine learning techniques
ID
Cica, Djordje
(
Avtor
),
ID
Sredanović, Branislav
(
Avtor
),
ID
Tešić, Saša
(
Avtor
),
ID
Kramar, Davorin
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,88 MB)
MD5: 5CE4DA28FD249353D259FEF5C094AA9A
URL - Izvorni URL, za dostop obiščite
https://www.emerald.com/insight/content/doi/10.1016/j.aci.2020.02.001/full/html
Galerija slik
Izvleček
Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.
Jezik:
Angleški jezik
Ključne besede:
machine learning
,
sustainable machining
,
machining force
,
cutting power
,
cutting pressure
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
Str. 162-180
Številčenje:
Vol. 20, no. 1/2
PID:
20.500.12556/RUL-165000
UDK:
621.9:004.85
ISSN pri članku:
2210-8327
DOI:
10.1016/j.aci.2020.02.001
COBISS.SI-ID:
66118659
Datum objave v RUL:
20.11.2024
Število ogledov:
15
Število prenosov:
1
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied computing and informatics
Založnik:
Elsevier
ISSN:
2210-8327
COBISS.SI-ID:
519427097
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
trajnostno odrezavanje
,
odrezovalna sila
,
rezalna moč
,
rezalni tlak
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj