izpis_h1_title_alt

Predictive modeling of turning operations under different cooling/lubricating conditions for sustainable manufacturing with machine learning techniques
ID Cica, Djordje (Avtor), ID Sredanović, Branislav (Avtor), ID Tešić, Saša (Avtor), ID Kramar, Davorin (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,88 MB)
MD5: 5CE4DA28FD249353D259FEF5C094AA9A
URLURL - Izvorni URL, za dostop obiščite https://www.emerald.com/insight/content/doi/10.1016/j.aci.2020.02.001/full/html Povezava se odpre v novem oknu

Izvleček
Sustainable manufacturing is one of the most important and most challenging issues in present industrial scenario. With the intention of diminish negative effects associated with cutting fluids, the machining industries are continuously developing technologies and systems for cooling/lubricating of the cutting zone while maintaining machining efficiency. In the present study, three regression based machine learning techniques, namely, polynomial regression (PR), support vector regression (SVR) and Gaussian process regression (GPR) were developed to predict machining force, cutting power and cutting pressure in the turning of AISI 1045. In the development of predictive models, machining parameters of cutting speed, depth of cut and feed rate were considered as control factors. Since cooling/lubricating techniques significantly affects the machining performance, prediction model development of quality characteristics was performed under minimum quantity lubrication (MQL) and high-pressure coolant (HPC) cutting conditions. The prediction accuracy of developed models was evaluated by statistical error analyzing methods. Results of regressions based machine learning techniques were also compared with probably one of the most frequently used machine learning method, namely artificial neural networks (ANN). Finally, a metaheuristic approach based on a neural network algorithm was utilized to perform an efficient multi-objective optimization of process parameters for both cutting environment.

Jezik:Angleški jezik
Ključne besede:machine learning, sustainable machining, machining force, cutting power, cutting pressure
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2024
Št. strani:Str. 162-180
Številčenje:Vol. 20, no. 1/2
PID:20.500.12556/RUL-165000 Povezava se odpre v novem oknu
UDK:621.9:004.85
ISSN pri članku:2210-8327
DOI:10.1016/j.aci.2020.02.001 Povezava se odpre v novem oknu
COBISS.SI-ID:66118659 Povezava se odpre v novem oknu
Datum objave v RUL:20.11.2024
Število ogledov:15
Število prenosov:1
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied computing and informatics
Založnik:Elsevier
ISSN:2210-8327
COBISS.SI-ID:519427097 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:strojno učenje, trajnostno odrezavanje, odrezovalna sila, rezalna moč, rezalni tlak

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj