Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Small scale model for predicting transportation-induced particle formation in biotherapeutics
ID
Pečarič Strnad, Urška
(
Avtor
),
ID
Zalokar, Petra
(
Avtor
),
ID
Osterman, Natan
(
Avtor
),
ID
Zidar, Mitja
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,45 MB)
MD5: 5C841E45A31B5A8DF6E106F9929C3929
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0927776524005630
Galerija slik
Izvleček
Understanding protein adsorption and aggregation at the air-liquid interfaces of protein solutions is an important open challenge in biopharmaceutical, medical, and biotechnological applications, among others. Proteins, being amphiphilic, adsorb at the surface, partially unfold, and form a viscoelastic film through non-covalent interactions. Mechanical agitation of the surface can break this film up, releasing insoluble protein particles into the solution. These aggregates are usually highly undesirable and even toxic in cases, such as for biopharmaceutical application. Therefore, it is imperative to be able to predict the behavior of such solutions undergoing surface agitation during handling, usually transport or mixing. We apply the findings on the viscoelastic protein f ilm, formed at the air-liquid interface, to the prediction of surface mediated aggregation in selected protein solutions of direct biopharmaceutical relevance. Our broad study of Brewster angle microscopy and aggregation monitoring across multiple size ranges by micro-flow imaging, light scattering, and size exclusion chromatography shows that formation of protein particles is driven by the adsorption rate as compared to the rate of surface turnover and that surface film dynamics in the quiescent phase directly affect aggregation. We demonstrate how these learnings can be directly applied to the design of a novel small scale biopharmaceutical stability study, simulating relevant transport conditions. More generally, we show the impact of adsorption dynamics at the air- liquid interface on the stability of a distinct protein solution, as a general contribution to understanding different colloidal and biological interfacial systems.
Jezik:
Angleški jezik
Ključne besede:
biophysics
,
proteins
,
aggregation
,
adsorption
,
biopharmaceuticals
,
viscoelastic films
,
air-liquid interface
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2025
Št. strani:
9 str.
Številčenje:
Vol. 245, art. no. ǂ114304
PID:
20.500.12556/RUL-164746
UDK:
577.322
ISSN pri članku:
0927-7765
DOI:
10.1016/j.colsurfb.2024.114304
COBISS.SI-ID:
214266115
Datum objave v RUL:
08.11.2024
Število ogledov:
180
Število prenosov:
169
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Colloids and surfaces : Biointerfaces
Skrajšan naslov:
Colloids surf., B Biointerfaces
Založnik:
Elsevier
ISSN:
0927-7765
COBISS.SI-ID:
15329029
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
biofizika
,
proteini
,
agregacija
,
adsorpcija
,
biofarmacevtiki
,
viskoelastičnost
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj